Читаем Фрактальная геометрия природы полностью

В [367] описана вихревая решетка, сочетающая в себе абсолютное и взвешенное створаживание, позаимствованное у Кантора. Вихри не задаются заранее, но генерируются при построении с помощью того же статистического механизма, который используется для генерации заключенной в них массы. Кроме того, дискретные вихревые слои сливаются в такой решетке в непрерывный континуум.

Предельная логарифмически нормальная функция: обоснование. Произведем кое-какие последовательные модификации взвешенного створаживания на примере некоторой функции L(t) от одной переменной (выбранной из соображений простоты).

После n - го этапа плотность взвешенного створаживания задается функцией Yn(t), такой, что приращение ΔlnYn(t)=lnYn+1(t)−lnYn(t) есть ступенчатая функция; изменяется эта функция только тогда, когда tпредставляет собой интеграл, кратный b−n=rn, в остальные же моменты времени ее значениями являются независимые случайные величины вида lnW. Положим теперь, что приращение ΔlnW является логарифмически нормальным со средним −½(lnb) и дисперсией μlnb. При этом ковариация между ΔlnYn(t) и ΔlnYn(t+τ) принимает на интервале |τ|n значение μ(lnb)(1−|τ|/rn) и обращается в нуль вне этого интервала. Функция ΔlnYn(t) не может считаться гауссовой, поскольку совместное распределение ее значений при двух (или более) t не является многомерной гауссовой случайной величиной.

Первая модификация. Заменим все ΔlnYn(t) соответствующими ΔlnY*n(t), определяемыми как гауссовы случайные функции с практически той же ковариацией μ(lnb)exp(1−|τ|/rn). В результате такой замены сохраняется «область зависимости» оригинала, однако нарушаются дискретные границы между вихрями продолжительности rn.

Вторая модификация. Заменим дискретный параметр nlnb непрерывным параметром λ. Сумма конечных разностей ΔlnY*n(t) заменяется при этом интегралом бесконечно малых дифференциалов dlnLλ(t) со средним −½μdλ и дисперсией μdλ, а вихри становятся непрерывными.

Определение функцииL(t). Рассмотрим предел

.

Случайная величина lnLλ(t)является гауссовой со средним λ(t)>=−½λμ и дисперсией σ2Lλ(t)=λμ. Отсюда λ(t)>=1 при всех λ. Однако предел функции Lλ(t) может быть либо невырожденным, либо почти наверное равным нулю. Математического разрешения эта проблема пока не получила, однако можно, очевидно, придать строгий вид нижеследующим эвристическим рассуждениям. Они проводятся на примере более интересных функций L(x) от трехмерной переменной.

Множество концентрации предельной логарифмически нормальной меры. Удобным средством для получения представления о множестве, в котором значение Lλ(x) не только не малó, но чрезвычайно велико, являются опорные квадраты со стороной rn. Это не искусственно навязанные субвихри, а всего лишь способ измерения. При n≫1 и фиксированном x вероятность того, что значение логарифмически нормальной функции Ln lnb(x) окажется очень близко к нулю, чрезвычайно высока, т.е. на бóльшей части области определения значения этой функции чрезвычайно малы.

Поскольку функция Ln lnb(x) непрерывна, изменение ее значения внутри ячейки со стороной rn очень невелико, а это значит, что к настоящей модели применим способ получения множества концентрации в случае взвешенного створаживания с логарифмически нормальной величиной W. Если пренебречь логарифмическими членами, то количество ячеек, составляющих бóльшую часть интеграла функции Ln lnb(x), имеет математическое ожидание Q=(rn)D*, где D*=3−μ/2.

Если μ>6 (т.е. D*<0), то Q→0 при λ→∞, и функция L(x) почти наверное вырождена.

Если 4<μ<6 (т.е. 0*<1), то функция L(x) имеет размерность D=D* и невырождена, однако ее следы на плоскостях и прямых почти наверное вырождены.

Если 2<μ<4 (т.е. 1*<2), то функция L(x) и ее следы на плоскостях невырождены (размерности D* и D*−1, соответственно), однако ее следы на прямых почти наверное вырождены.

Если 0<μ<2 (т.е. 2*<3), то и функция L(x), и ее следы на плоскостях и прямых невырождены (размерности D*, D*−1 и D*−2, соответственно).

6. РАЗМЕРНОСТЬ КОНЦЕНТРАТА МЕРЫ

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература