Читаем Фрактальная геометрия природы полностью

D=−(π1lnπ12lnπ23lnπ3).

Формально величина D является «энтропией», как она определена в термодинамике, или «информации»», как ее определяет Шеннон (см. [34]).

Г. Размерность подобия множества B. Эта размерность равна единице. В самом деле, множество B самоподобно с N=3 и r=⅓, следовательно, DS=ln3/ln3=1; причина введения индекса S вскоре разъяснится. Аналогичным образом, размерность трехмерных вариантов B равна 3. В данном примере величина DS не может иметь большого физического смысла: во-первых, она не зависит от весов Wi, если те отвечают вышеприведенным условиям; во-вторых, если заменить множество B его канторовым пределом, то ее значение скачкообразно изменяется с 1 на ln2/ln3.

Кроме того, фрактальное однородное распределение больше не может основываться на самоподобии. В самом деле, если соотнести с каждым участком длиной 3−k один и тот же вес, в результате мы получим однородное распределение на интервале [0,1]. Оно никак не связано со значениями весов Wi и отлично от меры, с помощью которой генерировалось само множество. К тому же, при переходе к канторову пределу это однородное распределение разрывно переходит в распределение весьма неоднородное.

Д. Размерность подобия «множества концентрации» множества B. Эта размерность равна D. Дело в том, что мера Безиковича довольно точно аппроксимируется фрактально однородной мерой, размерность подобия которой равна размерности Хаусдорфа – Безиковича D . Точнее говоря, после некоторого большого количества k этапов каскада бóльшая часть первоначально однородной массы оказывается сосредоточенной в 3kD троичных интервалов с длиной 3−k. Распределение этих интервалов в [0,1] неоднородно, однако длина самой большой пустоты стремится при k→∞ к нулю.

Комментарий. Следует различать «полное множество», которое должно включать в себя всю массу, и «частное множество», в котором сосредоточена бóльшая часть массы. Оба множества самоподобны, однако их размерности самоподобия DS и D различны. См. также подраздел 5 данного раздела.

4. СЛУЧАЙНОЕ ВЗВЕШЕННОЕ СТВОРАЖИВАНИЕ [378, 376]

В работах [378, 376] я предложил естественное и достаточно глубокое обобщение метода Безиковича, которое получило дальнейшее развитие в [254].

Воздействие каждого этапа каскада заключается в умножении плотностей в b3 субвихрях каждого вихря на одинаково распределенные и статистически независимые случайные веса Wi.

После k этапов каскада взвешенного створаживания количество вихрей, в которых оказывается сосредоточена бóльшая часть массы, составляет величину порядка bkD* (при общем количестве вихрей b3k), где

D*=−b(r3W)>=3−bW>.

В частности, если величина W дискретна и ее возможные значения wi имеют относительные вероятности pi, имеем

D*=3−∑piwilogbwi.

СлучайD*>0; D=D*. Мера, порождаемая взвешенным створаживанием аппроксимируемого фрактально однородной мерой с размерностью D=D*, получаемой так же, как описано в главе 23.

СлучайD*<0; D=0. Количество непустых ячеек асимптотически стремится к нулю, а это значит, что предел почти наверное оказывается пустым.

В общей сложности, носитель массы аппроксимируется замкнутым множеством с размерностью D=max(0,D*).

Сечения. Аналогичным образом масса, заключенная в плоских и линейных сечениях, сосредотачивается в относительно малом количество вихрей: bD*−1 для плоских сечений (при общем числе вихрей b2) и bD*−2 для линейных сечений (при общем числе вихрей b). То есть сечения невырождены при D*>1 (и, соответственно, D*>2) и аппроксимируются фракталами с размерностями D*−1 и D*−2. Таким образом, размерности сечений в этом случае подчиняются тем же правилам, что и в случае лакунарных фракталов.

Новые случайные величины, инвариантные при взвешенном сложении. Пусть X - это случайная величина, которая асимптотически задает вес, заключенный внутри вихря любого порядка k или внутри его сечения прямой или плоскостью (размерность сечения обозначим через Δ). Я показал, что величины X удовлетворяют функциональным уравнениям

,

где C=bΔ, величины Wg и Xg - независимые случайные величины, равенство же выражает идентичность распределения. Это уравнение представляет собой обобщение уравнения (L), рассматриваемого в разделе устойчивые по леви случайные величины и функции. Решения этого уравнения являются обобщением устойчивых случайных величин и подробнее обсуждаются в цитированных выше статьях [378, 376] и [254].

5. ПРЕДЕЛЬНОЕ ЛОГАРИФМИЧЕСКИ НОРМАЛЬНОЕ СЛУЧАЙНОЕ СТВОРАЖИВАНИЕ И ФУНКЦИЯ [367]

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература