Читаем Фрактальная геометрия природы полностью

Автором (либо соавтором) многих работ, посвященных определению внутренних функций hS(ρ) случайных множеств, является С. Дж. Тейлор; особо рекомендую обратить внимание на статью [484] (написанную им в соавторстве с У. Э. Прюиттом).

4. РАЗМЕРНОСТЬ ХАУСДОРФА – БЕЗИКОВИЧА: ОПРЕДЕЛЕНИЕ

Если известно, что множество S двумерно, вполне достаточно оценить хаусдорфову h - меру для h(ρ)=πρ2. Однако определение хаусдорфовой меры сформулировано таким образом, что предварительного знания размерности D не требуется. Имея дело со стандартной фигурой неизвестной размерности, мы будем оценивать ее меру для всех пробных функций h(ρ)=γ(d)ρd, где d - целое число. Если длина фигуры бесконечна, а объем равен нулю, то она может быть только двумерной.

Безикович распространил суть последнего заключения на случаи, в которых показатель d не является целым числом, а множество S - стандартной фигурой. Он показал, что для каждого множества S существует такое вещественное значение D, что d - мера этого множества при d бесконечна, а при d>D обращается в нуль.

Эта величина D и называется размерностью Хаусдорфа – Безиковича множества S.

Для физика это означает, что величина D представляет собой критическую размерность.

D - мерная хаусдорфова мера D - мерного множества S может быть либо равна нулю, либо бесконечна, либо положительна и конечна. Хаусдорф ограничился только последним, самым простым, случаем и показал, что в эту категорию входят канторовы множества и кривые Коха. Если множество S ко всему прочему еще и самоподобно, легко заметить, что его размерность подобия должна быть равна D. С другой стороны, мы знаем, что типичные случайные множества имеют в качестве естественной размерности нулевую меру.

Долгое время Безикович являлся автором или соавтором почти всех публикуемых по данной теме работ. Если Хаусдорфа можно назвать отцом нестандартной размерности, то Безикович, несомненно, заслужил себе звание ее матери.

Коразмерность. Когда в роли пространства Ω выступает E, D≤E, а разность называется коразмерностью.

5. ПРЯМЫЕ ПРОИЗВЕДЕНИЯ МНОЖЕСТВ (СЛОЖЕНИЕ РАЗМЕРНОСТЕЙ)

Рассмотрим множества S1 и S2, принадлежащие, соответственно, E1 - пространству и E2 - пространству, и обозначим через S множество в E - пространстве (E=E1+E2), представляющее собой произведение множеств S1 и S2 . (Если E1=E2=1, то S - это множество расположенных на плоскости точек (x,y), причем x∈E1 и y∈E2.)

Эмпирическое правило гласит, что если множества S1 и S2 «независимы», то размерность множества S равна сумме размерностей множеств S1 и S2.

Понятие «независимости», входящее в это правило, оказывается неожиданно сложно сформулировать и представить в общем виде. См. [413, 414], [204] и [416]. К счастью, в подобных прецедентных исследованиях (в таких, например, какие мы рассматриваем в настоящем эссе) нас, как правило, спасает интуиция.

6. ПЕРЕСЕЧЕНИЯ МНОЖЕСТВ (СЛОЖЕНИЕ КОРАЗМЕРНОСТЕЙ)

Эмпирическое правило выглядит следующим образом: если S1 и S2 суть независимые множества в E - пространстве, и

коразмерность (S1)+коразмерность (S2),

то левая часть этого неравенства почти наверное равна коразмерности S1∩S2. Если сумма коразмерностей больше E, то размерность пересечения почти наверное равна нулю.

В частности, два множества одинаковой размерности не пересекаются, если D≤E/2. Размерность E=2D можно, таким образом, назвать критической.


Примечательно, что два броуновских следа (при том, что размерность броуновского следа D=2) пересекаются при E<4 и совершенно не соприкасаются при E≥4.

Правило очевидным образом распространяется и на пересечения более чем двух множеств.

Самопересечения. Множество k - кратных точек S можно рассматривать, как пересечение k реплик S. Напрашивается предположение, что, с точки зрения размерности пересечения, упомянутые k реплик можно считать независимыми. По крайней мере, в одном случае эта догадка оказывается верной. С. Дж. Тейлор в работе [561] исследует следы броуновского движения и движения Леви в 1 и 2 (обобщая результаты, полученные Дворжецким, Эрдешем и Какутани). Размерность следа равна D, а размерность множества, состоящего из его k - кратных точек, составляет max[0,E−k(E−D)]. Телор предположил, что этот результат верен в E для всех k вплоть до k=∞.

7. ПРОЕКЦИИ МНОЖЕСТВ

Эмпирическое правило таково: когда фрактал S размерности D проецируется вдоль независимого от S направления на евклидово подпространство размерности E0, для проекции S* верно равенство:

размерность S=min(E0,D).

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература