Читаем Фрактальная геометрия природы полностью

Приложение. Пусть x1∈S1 и x2∈S2, где S1 и S2 - фракталы в E с размерностями D1 и D2. Через a1 и a2 обозначим некие неотрицательные вещественные числа и определим множество S как множество, составленное из точек вида x=a1x1+a2x2. Размерность D этого множества удовлетворяет неравенству:

max(D1,D2)≤D≤min(E,D1+D2).

Для доказательства находим прямое произведение E на E и проецируем.

В случае независимости множеств скорее всего подойдет и верхний предел размерности. При D=E=1 множество S является либо фракталом, либо множеством с интервалами.

8. СУБОРДИНАЦИЯ МНОЖЕСТВ (УМНОЖЕНИЕ РАЗМЕРНОСТЕЙ)

См. главу 32.

9. СУБРАЗМЕРНОСТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ

Если внутренняя функция множества S имеет вид hS(ρ)=γ(D)ρD, свойства фрактала полностью описываются его размерностью D. Если же

hS(ρ)=ρD[ln(1/ρ)]Δ1[ln ln(1/ρ)]Δ2,

то описание фрактальных свойств множества S оказывается более громоздким. Одной размерностью в этом случае не обойтись, требуется последовательность D, Δ1, Δ2. Величины Δm можно назвать субординатными размерностями или субразмерностями.

Субразмерности в состоянии пролить свет на вопрос, следует ли считать фракталами пограничные множества, описанные в разделе фракталы, 3. Возможно имеет смысл называть фракталами любое множество S, размерность D которого равна DT, но хотя бы одна субразмерность Δ отлична от нуля.

ЭВРИСТИКА ЛИПШИЦА – ГЁЛЬДЕРА

Фрактальная размерность является по своему происхождению локальным свойством, несмотря на то, что в настоящем эссе локальные свойства оказывают влияние на свойства глобальные. Таким образом, имея дело с графиком во всех иных отношениях произвольной непрерывной функции X(t), следует соотносить размерность D с другими локальными свойствами. Одним из наиболее полезных локальных свойств является показатель Липшица – Гёльдера (ЛГ) α. Суть условия ЛГ при t+ состоит в том, что


X(t)−X(t0)~|t−t0|αпри 00;

аналогично оно выглядит и для случая t−. Глобальный ЛГ – показатель в интервале [t',t"] имеет вид . Если функция X(t) не является постоянной, λ≤1.

ЛГ – эвристика и размерностьD. Если известен показатель α, то количество квадратов со стороной r, необходимых для покрытия графика функции X между моментами времени t и t+r, приблизительно равно rα−1. Таким образом, можно покрыть график функции X(t) на участке t∈[0,1] с помощью N квадратов и приблизительно оценить размерность функции как D=lnN/ln(1/r). Этот способ оценки D мы будем называть эвристикой Липшица – Гёльдера. Он устойчив и весьма эффективен.

Примеры. Если функция X дифференцируема для всех t между 0 и 1, а точки, в которых X'(t)=0, в расчет не принимаются, то на всем интересующем нас интервале α=1, и количество квадратов, необходимых для покрытия графика функции, равно N~rα−1(1/r)=r−1. Отсюда D=1, что, конечно же, верно.

Если X(t) - броуновская функция (обыкновенная или дробная), то можно показать, что α≡λ=H. Эвристическое значение N приблизительно равно rH−1−1, т.е. D=2−H, что опять же согласуется с известной размерностью D.

Харди [194] показывает, что для функций, описанных в разделе функция Вейерштрасса … α≡H. Следовательно, можно предположить, что их размерность Хаусдорфа – Безиковича равна 2−H.

Совершенно иначе обстоит дело с канторовой лестницей (см. рис. 125). Областью определения функции X являются здесь только те значения t, которые принадлежат фрактальной пыли с фрактальной размерностью δ<1, а показатель α зависит от t . Разделим интервал [0,1] на 1/r временных промежутков длины r. В r−δ этих промежутков α=δ, в других промежутках показатель α не определен, однако если повернуть координатные оси на небольшой угол, то α=1. Отсюда эвристически получаем для количества покрывающих квадратов значение r−1+rδ−1r−δ=2r−1, а для размерности D=1. Это в самом деле так, что и отмечено в пояснении к рис. 125.

Кроме того, для суммы броуновской функции и канторовой лестницы с δ получаем D=2−H и λ=δ, следовательно, 1.

Резюме. Подтверждение эвристически полученного неравенства 1≤D≤2−λ можно найти в работах [317] и [30]. См. также [255], с. 27.

Об определении «фрактала». В разделе фракталы упоминается о желательности расширения рамок определения термина фрактал с тем, чтобы они включали и канторову лестницу. Может быть, нам следует сказать так: кривая фрактальна, если показатель λ<1, а показатель α близок к λ при «достаточно многих» значениях t? Мне бы не хотелось следовать этим путем, так как подобные расширения довольно громоздки и, кроме того, в них проводится принципиальное различие между случаями DT=0 и DT>0.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература