Читаем Фрактальная геометрия природы полностью

Неуловимый континент. На вышеприведенном рисунке можно видеть, что длина стороны инициатора вносит не присущий генератору внешний порог. Более последовательным решением будет экстраполировать эту длину, как мы поступили в случае островов без озер. Однако и в этом случае мы можем быть почти уверены, что мы получим не континент, а лишь бесконечно вложенные друг в друга острова и озера.

Соотношение между площадью и количеством. При определении площади острова (или озера) можно исходить либо из общей площади фигуры, либо из площади суши (или воды) в пределах береговой линии. Эти две величины связаны между собой постоянным коэффициентом, т. е. влияют на количество Nr(A>a) через его префактор F', а не через показатель D/2.

Комбинация интервалов и деревьев. Допустим теперь, что оставшиеся N−Nc звеньев образуют либо ломаную с двумя свободными концами, либо дерево. В обоих случаях фрактал разделяется на бесконечное множество не связанных между собой элементов, каждый из которых представляет собой кривую. Такую сг-кривую уже нельзя считать σ-петлей; уместнее, пожалуй, будет назвать ее σ-деревом или σ-интервалом.

ПОНЯТИЕ КОНТАКТНОГО КЛАСТЕРА

Генератор может также сочетать в себе петли, ветви и разные другие топологические конфигурации. Связные части предельных фракталов, получаемых при таком построении, напоминают кластеры из теории перколяции (как будет показано позже в этой главе) и из многих других областей физики. Для нас использование термина «кластер» чрезвычайно неудобно, так как совсем недавно (при рассмотрении пылевидных множеств в главе 9) мы вкладывали в него несколько иной смысл. Стало быть, необходим более точный и — как следствие — более громоздкий термин. Я решил остановиться на словосочетании «контактный кластер». Хорошо еще, что в термине «сг-кластер» нет такой двусмысленности.

(Можно заметить, что контактный кластер имеет однозначное и естественное математическое определение, тогда как понятие кластеризации в пыли размыто и интуитивно и определяется, в лучшем случае, через весьма спорные статистические законы.)

Контактные кластеры, заполняющие плоскость. В случае, когда размерность D достигает своего максимума D=2, остаются в силе рассуждения из предыдущего раздела, однако возникает необходимость в кое-каких добавочных замечаниях. Каждый отдельный кластер стремится к некоторому пределу, который может представлять собой прямую или — как бывает чаще всего — фрактальную кривую. С другой стороны, все кластеры в совокупности образуют σ-кривую, ответвления которой заполняют плоскость в высшей степени плотно. В пределе эта σ-кривая ведет себя подобно кривым из главы 7: она перестает быть кривой и становиться областью плоскости.

Неуловимый бесконечный кластер. Данный подход ни в коем случае не подразумевает возможности образования действительно бесконечного кластера. Можно легко построить топологию генератора таким образом, чтобы любая данная ограниченная область была почти наверняка окружена контактным кластером. Этот кластер, в свою очередь, почти наверняка окажется окружен большим кластером и т. д. Размер кластера сверху ничем не ограничен. В более общем виде: если кластер представляется бесконечным только потому, что он окружает очень большую область, то стоит лишь вспомнить о том, что сам он окружен кластером еще большего размера, и конечный размер любого кластера перестанет вызывать сомнения.

СООТНОШЕНИЕ МЕЖДУ МАССОЙ И КОЛИЧЕСТВОМ. СООТНОШЕНИЕ МЕЖДУ ВЗВЕШЕННЫМ ДИАМЕТРОМ И КОЛИЧЕСТВОМ. ПОКАЗАТЕЛИ D-DCИ D/DC

Переформулируем функцию Nr(Λ>λ) двумя способами: первый состоит в замене диаметра кластера λ его массой μ, второй — в назначении единице размера контактного кластера некоторого веса.

Массой кластера здесь называется просто количество звеньев длины b−k в самом кластере (только не считайте звенья внутри петельных кластеров). В сущности (см. главы 6 и 12), мы строим несколько модифицированную сосиску Минковского (рис. 57), размещая в каждой вершине квадрат со стороной b−k и добавляя по половине квадрата к каждой концевой точке.

Масса кластера диаметра Λ равна площади его модифицированной сосиски, M∝(Λ/bk)Dc(bk)2Dc/(bk)Dc−2. Поскольку Dc<2, масса M стремится к нулю при k→∞. Масса всех контактных кластеров в совокупности пропорциональна (bk)D−2; при D<2 она также стремится к нулю. Что касается относительной массы каждого отдельного кластера, то она пропорциональна (bk)Dc−D; скорость ее стремления к нулю возрастает при увеличении значения разности D−Dc.

Соотношение между массой и количеством. Очевидно, что

Nr(M>μ)∝(bk)−D+2D/Dcμ−D/Dc,

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература