Читаем Фрактальная геометрия природы полностью

Отступление о костях задних ног. Отношение между высотой и диаметром, характеризующее настоящие деревья с D=3 и Δ=2, справедливо также и для скелетов животных, только буквой d здесь обозначается диаметр главной опорной кости.

УПРУГИЙ СКЕЙЛИНГ ПО ГРИНХИЛЛУ

Легочные и сосудистые деревья поддерживаются снаружи; большинство растений поддерживают себя сами. Гринхилл (цитирую по [568], издание 1961 г.) вводит на этом этапе понятие упругости (в противоположность геометрическому подобию). Идея статического упругого подобия заключается в том, что общая высота дерева не должна превышать некоторого фиксированного процента от критической высоты прогиба под действием собственного веса однородного цилиндра с таким же диаметром основания. Это условие дает в точности те же результаты, что и фракталы с D=3 и Δ=2. То есть «трубчатое» дерево с заполняющими пространство листьями прогибаться не будет.

Макмагон и Кронауэр [423] развили идею Гринхилла, введя понятие динамического упругого подобия, и получили все тот же результат.

РАСТЕНИЯ СD=Δ<3

Ствол некоторых растений служит не только в качестве опоры для веса и трубы для перекачки соков, но и в качестве хранилища для питательных веществ. В таких случаях – и даже когда сосудистая система растения соответствует «трубчатой модели» - показатель Δ не обязательно должен быть равен 2.

На рис. 235 изображено дерево, концы веток которого образуют нестандартный «зонтик» с размерностью D<3 и Δ=D (на рисунке, разумеется, представлен плоский вариант, соответствующие показатели раны D−1 и Δ−1). Хорошо видно, что геометрическая цветная капуста имеет характерные пустые включения – совсем как настоящая цветная капуста, выросшая на грядке. Простое совпадение? Природе нет нужды загромождать генетический код характеристиками, предопределяемыми геометрией.

Рис. 235. Плоские фрактальные модели цветов


Возьмем любое из зонтичных деревьев на рис. 223 с θ<π и заменим каждый прямолинейный отрезок равнобедренным треугольником, в котором указанный отрезок займет место одной из сторон, при этом углы у концов отрезков будут равны θ/2 (корневой конец) и π−θ. Поскольку угол θ имеет наименьшее, позволяющее избежать самопересечений дерева, значение, наши утолщенные треугольные стебли также не пересекаются, но заполняют внутреннюю область «зонтика». Чтобы сделать рисунки более наглядными, треугольники на одном из них были слегка подрезаны с одной стороны.

Заметим, что ветви быстро истончаются по мере того, как значение размерности D приближается к 1 или к 2 (в пространственной кривой, соответственно, к 2 или к 3). Соответствуют ли наблюдаемые в действительности значения D наибольшей возможной толщине ветвей?

Рис. 236 и 237. Заполняющие пространство рекурсивные бронхи


«Поддеревья», построенные из двух первых ветвей, подобны целому дереву, но каждое со своим коэффициентом подобия (обозначим их через r1 и r2). Все дерево самоподобным не является, так как наряду с поддеревьями оно включает в себя и ствол. С другой стороны, множество асимптотических концов ветвей самоподобно. Согласно пояснению к рис. 87 и 88, размерностью подобия называется размерность D, удовлетворяющая равенству r1D+r2D=1. В верхней фигуре на рис. 237 концы ветвей почти заполняют плоскость, и значение разности 2−D мало; в нижней фигуре D значительно меньше 2.

Кстати, при постоянном отношении диаметра к длине коразмерность 3−D соответствующей пространственной структуры оказывается меньше, чем коразмерность 2−D ее плоского варианта.

Рис. 236. Эта сложная фигура представляет собой результат кохова построения дерева, в котором на каждом этапе генератор изменяется так, чтобы отношение толщины к длине постепенно уменьшалось до 0. В левой части рисунка это отношение уменьшается быстрее, чем в правой. Как следствие, множество концов ветвей перестает быть самоподобным, однако все же достигает размерности D=2. Вот вам еще один способ достижения цели, поставленной в главе 15.

Рис. 237. При рекурсии Коха все прямолинейные интервалы любого конечного приближения порождают в следующем приближении ломаные, состоящие из более коротких отрезков. Во многих случаях бывает полезно обобщить эту процедуру, позволив определенным интервалам оставаться «бесплодными», т. е. неизменными на последующих этапах построения.

В данном случае такая обобщенная процедура использована для выращивания «дерева». Начинаем со ствола с бесплодными стенками и плодоносной «почкой» на конце. Почка порождает две «ветви», в которых плодоносными являются опять только «почки» на концах. И так далее до бесконечности. Для того чтобы дерево заполнило без пустот и самопересечений приблизительно прямоугольную область плоскости, рост его намеренно асимметричен. Однако асимптотических самокасаний мы избегать не стремились; и в самом деле, всякая точка, принадлежащая линии «коры», может быть получена как предел окончания какой-либо ветви.

ЕЩЕ О ГЕОМЕТРИИ МОЗГА

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература