Читаем Фрактальная геометрия природы полностью

Первые самоинверсные фракталы были представлены на суд публики в 80-х гг. XIX в. Анри Пуанкаре и Феликсом Клейном вскоре после того, как Вейерштрасс построил непрерывную, но не дифференцируемую функцию – примерно в одно время с множествами Кантора и задолго до кривых Пеано и Коха и их масштабно-инвариантных родственников. Ирония заключается в том, что самоподобные фракталы нашли себе надежное место под солнцем в качестве материала для всевозможных контрпримеров и математических игр, в то время как самоинверсные фракталы образовали узкоспециальный раздел теории автоморфных функций. Теорией этой некоторое время никто не занимался, затем она возродилась, но в весьма абстрактной форме. Одна из причин того, что самоинверсные фракталы оказались полузабыты, состоит в том, что их действительная форма оставалась неисследованной вплоть до настоящей главы, в которой вашему вниманию будет предложен новый эффективный способ их построения.

В последнем разделе главы мы рассмотрим одну физическую проблему, главным героем которой оказывается простейший самоинверсный фрактал.

БИОЛОГИЧЕСКАЯ ФОРМА И «ПРОСТОТА»

Как мы вскоре увидим, многие нелинейные фракталы имеют «органический внешний вид», поэтому данное отступление посвящено биологической теме. Биологические формы часто чрезвычайно сложны, и может показаться, что программы, отвечающие за выращивание таких форм, должны быть очень громоздкими. Особенно парадоксальными представляются случаи, когда внешняя сложность не служит, на первый взгляд, никакой разумной цели (а так случается довольно часто среди относительно простых живых существ) – почему бы Природе не стереть эти громоздкие программы из генетического кода и не освободить место для чего-нибудь действительно полезного?

Однако структура упомянутых сложных форм очень часто включает в себя многочисленные повторы. Вспомните, как в конце главы 6 мы говорили о том, что кривую Коха нельзя считать ни иррегулярной, ни чрезмерно сложной, поскольку она порождается простым и систематическим правилом. Все дело в том, что правило применяется снова и снова, последовательными циклами. В главе 17 эти соображения распространены на кодирование структуры легких.

В главах 18 и 19 мы намерены пойти гораздо дальше и обнаружить, что одни фракталы, построенные согласно нелинейным правилам, напоминают то насекомых, то головоногих, тогда как другие похожи на растения. Парадокс исчезает, уступая место невероятно тяжелому труду воплощения идей в реальность.

СТАНДАРТНАЯ ГЕОМЕТРИЧЕСКАЯ ИНВЕРСИЯ

Следующей по сложности геометрической фигурой после прямой является в евклидовой геометрии окружность, причем окружность остается окружностью не только при преобразовании подобия, но и при преобразовании обратными радиусами, т. е. инверсии. Многие ученые последний раз слышали об инверсии еще в школьные годы, поэтому, на мой взгляд, не лишним будет повторить основные положения. Возьмем окружность C радиуса R с центром в точке O; инверсия по отношению к окружности C преобразует некоторую точку P в точку P', такую, что P и P' лежат на одном луче с началом в точке O, причем длины отрезков |OP| и |OP'| удовлетворяют равенству |OP|×|OP'|=R2. Окружности, содержащие точку O, инвертируются в прямые, содержащие точки O, и наоборот (см. рисунок). Окружности, не содержащие точку O, инвертируются в окружности (рисунок внизу справа). Окружности, ортогональные C, и прямые, проходящие через точку O, остаются инвариантными при инверсии относительно C (рисунок внизу слева).

Рассмотрим теперь совокупность трех окружностей: C1, C2 и C3. Обычно – например, когда открытые ограниченные круги, границами которых являются окружности Cm, не пересекаются – существует окружность Γ, ортогональная каждой из окружностей Cm. Если окружность Γ существует, она совместно самоинверсна относительно Cm.

Эти краткие сведения практически исчерпывают то, что стандартная геометрия способна нам поведать о самоинверсных множествах. Остальные самоинверсные множества фрактальны, и большинство из них можно назвать какими угодно, но никак не гладкими.

Генератор. Самоинверсные множества. Как обычно, мы начинаем с генератора, который в данном случае состоит из некоторого (какого угодно) числа M окружностей Cm. Преобразования, представляющие собой последовательность инверсий относительно этих окружностей, составляют то, что алгебраисты назвали бы группой, порождаемой этими инверсиями; обозначим ее буквой G. Для обозначения самоинверсного множества имеется и формальный термин: «множество, инвариантное под действием операций группы G».

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература