Эти три окружности определяют два круговых треугольника, углы которых равны
Законченное аполлониево построение включает в себя пять окружностей, три заданных и две аполлониевых, которые вместе определяют шесть круговых треугольников. Повторяя вышеописанную процедуру, впишем в каждый треугольник наибольшую возможную окружность. Результат бесконечного повторения такой процедуры называется аполлониевой упаковкой. А если добавить к этой бесконечной совокупности окружностей ее предельные точки, то получится множество, которое я назвал аполлониевой сетью. Область сети, заключенную внутри кругового треугольника (как показано на рисунке) будем называть аполлониевой салфеткой.
Если одну из аполлониевых окружностей первого поколения заменить на любую из заданных внутренних окружностей, предельное множество никак не изменится. Если указанной аполлониевой окружностью заменить внешнюю заданную окружность, то построение начинается с трех заданных окружностей, внешних по отношению друг к другу, и одна из аполлониевых окружностей первого этапа окажется наименьшей окружностью, описанной вокруг трех заданных. После такого нетипичного этапа построение продолжается так же, как описано выше, подтверждая то, что наш рисунок и в самом деле соответствует наиболее общему случаю.
Упаковка Лейбница.
Аполлониева упаковка похожа на конструкцию, которую я называю круговой упаковкой Лейбница, так как, насколько мне известно, впервые она была описана в письме Лейбница к де Броссу: «Представьте себе окружность, а затем впишите в нее еще три окружности наибольшего возможного радиуса, конгруэнтные друг другу: повторите аналогичную операцию с каждой из этих окружностей и с каждым промежутком между ними. А теперь вообразите, что этот процесс продолжен до бесконечности…»АПОЛЛОНИЕВЫ СЕТИ САМОИНВЕРСНЫ
Вернемся к началу построения аполлониевой сети: трем касательным окружностям. Добавим сюда любую из соответствующих аполлониевых окружностей и назовем получившиеся четыре окружности
Существует четыре комбинации из трех
Разделавшись с нудным развешиванием ярлыков, получаем заслуженную награду. Даже самое поверхностное рассмотрение показывает, что наименьшее (замкнутое) множество, самоинверсное по отношению к четырем порождающим окружностям
При более тщательном изучении мы увидим, что каждая окружность в сети преобразуется в одну из
ВЯЗАНИЕ СЕТЕЙ ИЗ ОДНОЙ НИТИ
Аполлониева салфетка и салфетка Серпинского (рис. 205) имеют одно важное общее свойство: дополнение салфетки Серпинского представляет собой объединение треугольников (
Однако нам также известно, что салфетка Серпинского допускает альтернативное кохово построение, в котором конечные приближения являются терагонами (ломаными линиями) без самокасаний, а двойные точки появляются только в пределе. Это означает, что салфетку Серпинского можно построить, не отрывая карандаша от бумаги; через некоторые точки линия пройдет дважды, но она никогда не пройдет дважды по одному отрезку прямой.
Выражаясь метафорически, салфетку Серпинского можно связать из одной-единственной нити!
То же верно и для аполлониевой сети.
НЕСАМОПОДОБНЫЕ КАСКАДЫ И ОЦЕНКА РАЗМЕРНОСТИ
Круговые треугольники аполлониевой упаковки не подобны друг другу, следовательно, аполлониев каскад не самоподобен, а аполлониева сеть не является масштабно-инвариантным множеством. Сейчас следовало бы обратиться к определению Хаусдорфа – Безиковича для размерности
хотя его же последние (еще не опубликованные) численные эксперименты дают