Читаем Фрактальная геометрия природы полностью

Остальные окружности Γijk определяют оскулирующие диски Δijk, которые в свою очередь, также делятся на два класса. При добавлении к диску Δijk первого класса его кланов мы получим внутреннюю область кривой ; проделав же такую операцию с диском, принадлежащим ко второму классу, получим внешнюю область .

Это верно для многих (но не для всех) случаев, когда окружности Cm не образуют цепь Пуанкаре.

Перекрывающиеся и/или/ разорванные цепи. В случае, когда окружности Cm и Cn имеют две точки пересечения γ'mn и γ"mn, эти точки совместно заменяют точку γ. Если же окружности Cm и Cn не имеют ни одной точки пересечения, γ заменяется двумя взаимно инверсными точками γ'mn и γ"mn. Критерий идентификации Δijk становится при этом довольно громоздким, однако основная идея остается неизменной.

Разветвленные самоинверсные фракталы. Кривая может соединять в себе характерные особенности как смятой петли (кривой Жордана), так и аполлониевой сети, в результате чего мы получаем фрактально разветвленную кривую, близкую к тем, что мы рассматривали в главе 14, но часто гораздо более причудливого вида (см., например, рис. С7).

Самоинверсные пыли. Множество может также оказаться фрактальной пылью.

АПОЛЛОНИЕВА МОДЕЛЬ СМЕКТИЧЕСКОЙ СТРУКТУРЫ

В этом разделе мы ознакомимся с ролью, которую понятия аполлониевой упаковки и фрактальной размерности играют в описании класса веществ, известных под названием «жидкие кристаллы». В процессе этого ознакомления нам предстоит обратиться к одной из наиболее активных областей современной физики – теории критических точек. Примером критической точки может служить «точка» на диаграмме температура-давление, описывающая физические условия, при которых в пределах одной физической системы могут сосуществовать в равновесии твердая, жидкая и газообразная фазы. Аналитические характеристики физической системы в окрестности критической точки масштабно-инвариантны, следовательно, подчиняются степенным законам с некими конкретными критическими показателями (см. главу 36). Многие из этих показателей оказываются фрактальными размерностями, и вот перед вами первый пример.

Поскольку жидкие кристаллы не так хорошо известны широкой публике, как того хотелось бы, я начну с их описания, для чего обращусь к статье Брэгга [52]. Эти прекрасные и таинственные субстанции подвижны, как жидкости, однако с оптической точки зрения ведут себя подобно кристаллам. Их длинные цепеобразные молекулы имеют довольно сложную структуру. Некоторые жидкокристаллические фазы называются смектическими (от греч. σμηγμα, что означает «мыло»), так как моделируют мылообразные органические системы. Молекулы смектического жидкого кристалла расположены в слое вертикально и параллельно друг другу, как колосья на поле, при этом толщина слоя равна длине молекулы. В результате получаются очень гибкие и прочные слои или листы, которые, будучи деформированными, стремятся вернуть себе прежнюю форму. При низких температурах слои располагаются один на другом, точно листы в книге, образуя при этом твердый кристалл. Однако при повышении температуры становится возможным легко сдвигать слои относительно друг друга. Каждый слой представляет собой двумерную жидкость.

Особый интерес представляют фокальные конические структуры. Жидкокристаллический блок разделяется на два набора пирамид, причем основания половины из них располагаются на одной из двух противоположных граней, а вершины - на другой. Жидкокристаллические слои внутри каждой пирамиды оказываются свернутыми и образуют множество и приблизительно перпендикулярны плоскости основания пирамиды. В результате основанием каждого конуса является диск, ограниченный окружностью. Минимальный радиус ε такой окружности равен толщине слоя жидкого кристалла. Когда конусы заключены внутри пространственной области – в данном случае, пирамиды с квадратным основанием, - диски, образующие основания конусов, распределяются по основанию этой области (пирамиды). Для получения равномерного распределения следует начать с размещения на основании диска наибольшего радиуса. Затем поместим диски наибольшего возможного радиуса в каждый из остающихся углов и так далее. Если бы было возможно продолжать такое размещение до бесконечности, мы получили бы в точности аполлониеву упаковку.

Физические свойства такой модели мыла зависят от общих площади и периметра пустых промежутков, которые связаны с фрактальной размерностью D, своего рода фотографического «негатива», т.е. салфетки, сквозь отверстия которой не проходят молекулы мыла. Физические подробности можно найти в работе [32].

Рис. 253. Самоинверсный фрактал (построение Мандельброта)


Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература