Они, в частности, помогают оценить результаты вещественных и комплексных квадратичных преобразований вида x→f
*(x)=x2−μ, где x и μ вещественны, и z→f*(z)=z2−μ, где z=x+iy и μ - комплексные числа.Элементарный случай μ=0
довольно скучен с геометрической точки зрения, однако другие значения μ ведут к потрясающим фрактальным красотам, многие из которых были впервые продемонстрированы в статье [398].Удобнее всего получать упомянутые инвариантные формы с помощью итераций (т. е. многократных применений) одного из вышеуказанных преобразований. Исходные значения мы будем обозначать через x
0 или z0, а результаты k- й итерации функции f* - через xk или zk.Хронологически изучение итераций можно разделить на три этапа. Первый, связанный с комплексной переменной z
, прошел под знаменами Пьера Фату (1878 – 1929) и Гастона Жюлиа (1893 – 1978). Их публикации являются шедеврами классического комплексного анализа, ими восхищаются математики, однако на их фундаменте чрезвычайно сложно что-нибудь построить. В своей работе, о которой данная глава дает лишь весьма сжатое представление, я стараюсь придать бóльшую наглядность их основным открытиям, объединяя анализ с физикой и подробными иллюстрациями, в результате чего обнаруживается великое множество неизвестных ранее фактов.Последовавшее за этими открытиями возрождение помогло установить тесную связь свойств итераций с теорией фракталов. Из того факта, что находки Фату и Жюлиа оказались недостаточно проработаны для того, чтобы стать основой теории фракталов, мы можем сделать вывод, что даже классический анализ нуждается иногда в наглядности и интуитивной понятности, причем компьютерное моделирование может оказать ему в этом смысле серьезную помощь.
Следующий, промежуточный, этап включает в себя исследования Мирбергом итераций вещественных квадратичных отображений ℝ
(см., например, [440], а также труды Штейна и Улама [538] и Бролина [55]).На текущем этапе исследователи, по бóльшей части, игнорируют прошлое и сосредоточивают свои усилия на отображениях интервала [0,1] в себя (за подробностями рекомендую обратиться к обзорам [180], [209], [83], [144] и [219]). В последнем разделе главы рассматривается показатель δ
по [179] и [142]: доказывается, что существование δ следует из более явного свойства итераций в комплексной плоскости (т. е. их фрактальности).ВОЗМОЖНОСТЬ ПОЛУЧЕНИЯ КАНТОРОВОЙ ПЫЛИ ПОСРЕДСТВОМ НЕЛИНЕЙНОГО ПРЕОБРАЗОВАНИЯ
Из главы 8 нам известно, что троичная канторова пыль C
инвариантна при преобразовании подобия, если коэффициент подобия имеет вид 3−k. Это самоподобие является, безусловно, очень важным свойством, однако его недостаточно для определения C. Напротив, мы можем полностью определить множество C как наибольшее ограниченное множество, инвариантное при следующем нелинейном преобразовании («перевернутое V»):x→f(x)={1/2−|x−1/2|}/r
, где r=1/3.Точнее, мы многократно повторяем это самоотображение вещественной оси, при этом исходное значение x
0 «размазано» по оси x, а окончательные значения сводятся к точке x=−∞ и канторовой пыли C. Неподвижные точки x=0 и x=3/4 принадлежат C.Набросок доказательства инвариантности множества
C. Поскольку f(x)=3x при x<0, итерации всех точек x0<0 сходятся к −∞ прямо, т.е. всегда справедливо неравенство xn<0. Для точек x0>1 прямой сходимости предшествует один предварительный этап, так как xk<0 для всех k≥1. Для точек в пустой области z/30<2/3 предварительных этапов будет два, так как x1>0, но xk<0 для всех k≥2. Для точек в пустых областях 1/90<2/9 или 7/90<8/9 предварительных этапов будет уже три. В более общем виде это выглядит так: если интервал ограничен пустой областью, которая отправляется в бесконечность после k предварительных этапов, то средняя треть (открытая) этого интервала отправится прямо в −∞ после (k+1)- го этапа. Однако ни одна точка множества C не уходит в −∞.КОНЕЧНОСТЬ ВНЕШНЕГО ПОРОГА
Для того чтобы распространить эти выводы на обобщенную канторову пыль с N=2
и r в интервале от 0 до 1/2, достаточно вставить желаемое значение r в выражение f(x)={1/2−|x−1/2|}/r. Если вы хотите получить какую-либо другую пыль, вам нужно лишь проследить, чтобы график функции f(x) имел соответствующую зигзагообразную форму.