Читаем Фрактальная геометрия природы полностью

Особый интерес представляют наросты на стене, с которой свисает драпировка. К сожалению, данная иллюстрация не может показать сложную структуру верхней части модели во всей ее красе. А). Для каждого значения λ драпировка включает в себя (в качестве своего рода «опоры») фрактальное дерево, составленное из итерированных прообразов точек x - интервала [0,1]. При всех малых и некоторых больших значениях λ<3 ветви этого дерева обладают по всей своей длине некоторой толщиной. Однако при других больших значениях λ от дерева остается лишь голый остов, полностью лишенный толщины. На рисунке мы можем видеть ветви вдоль прямых x=1/2 или y=0, остальные же при данном графическом процессе неизбежно оказываются потеряны. Б). Некоторые горизонтальные участки стены за драпировкой полностью покрыты крохотными «холмами» или «складками», однако мы можем увидеть лишь немногие, самые выдающиеся из них. Эти холмы и складки относятся к «молекулам – островам» (см. рис. 268 и 269), пересекающим вещественную ось. С учетом замечаний А) и Б) теория Мирберга – Фейгенбаума предстает в более общем виде.

Рис. 268 и 269. Сепараторы отображений z→λz(1−z) и z→z2−μ


Рис. 268 (внизу).μ- отображение. Значения μ внутри замкнутой черной области, ограниченной фрактальной кривой, таковы, что итерации точки z0=0 при отображении z→z2−μ не уходят в бесконечность. Большая точка заострения соответствует точке μ=−1/4, а самая правая точка – точке μ=2.

Рис. 269 (вверху).λ- отображение. Значения λ внутри замкнутой черной области и внутри пустого диска удовлетворяют неравенству Reλ>1 и таковы, что итерации точки z0=1/2 при отображении z→λz(1−z) не уходят в бесконечность. Полное λ - отображение симметрично относительно прямой Reλ=1.

Диск|λ−2|≤1и диск|λ|≤1без точкиλ=0. Значения λ внутри этих областей таковы, что итерации точки z0=1/2 сходятся к некоторой ограниченной предельной точке.

Корона и отростки. Снаружи пустых дисков λ - отображение образует «корону». Она разбивается на «отростки», «корнями» которых являются «принимающие связи», определяемые как точки вида λ=exp(2πim/n), где m/n - неприводимое рациональное число, меньшее 1.

Рис. 268 (вверху). На рисунке показана часть инверсии λ - отображения относительно точки λ=1. Если внимательно рассмотреть на λ - отображении отростки, корни которых имеют вид λ=exp(2πi/n), может сложиться впечатление, что «соответствующие точки» лежат на окружностях. Рисунок подтверждает истинность этого впечатления. Правильность других кажущихся окружностей подтверждается с помощью других инверсий.

Молекулы – острова. Многие «пятна», возникающие при вышеописанных отображениях, представляют собой истинные «молекулы – острова», о которых впервые сообщается в [398]. Форма такой молекулы идентична форме всего μ - отображения целиком, если не учитывать нелинейного искажения.

Сепаратор, основания и деревья. Граница заполненной черной области при λ и μ - отображениях является связной кривой; так как эту кривую обнаружил я, моим долгом было дать ей имя – я назвал ее сепаратором S. Множество внутри ограниченной этой кривой области разбивается на открытые атомы (см. текст). Обозначив период атома через w, определим его основание как кривую, на которой значение f*'w(zμ) вещественно.

Основания, лежащие на вещественной оси, известны в теории самоотображений как интервал [0,1], а их замыкание – как интервал [-2,4].

Словом, я обнаружил, что замыкание других атомных оснований разбивается на совокупность деревьев, каждое из которых укореняется на принимающей связи. В каждой точке такого дерева мы имеем несколько степеней ветвления – степень ветвления для концов ветвей плюс порядки бифуркации, ведущей к корню дерева. Кроме того, когда корень дерева приходится на атом-остров, сюда следует добавить порядки бифуркации, ведущей от дисков |λ−2|≤1 и |λ|≤1 к этому атому.

Рис. 269 (внизу слева). Здесь представлена подробная картина λ - отображения вблизи точки λ=2−exp(−2πi/3). Множество внутри S представляет собой предел областей вида fn(1/2), границами которых являются алгебраические кривые, называемые лемнискатами. Показано несколько таких областей, совмещенных друг с другом. При больших n области, равно как и само λ - отображение, выглядят несвязными; в действительности, они связаны, но вне сетки, использованной при вычислениях.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература