Обсуждая в главе 12 поверхность мозга, мы не принимали во внимание сеть аксонов, соединяющих различные его части. В случае мозжечка аксоны соединяют его поверхность с внешним веществом, и мы получаем в результате поверхность серого вещества, которая обволакивает дерево, состоящее из белого вещества. Я пересмотрел рассуждения главы 12 с учетом этого дерева и нашел, что полученные при этом поправочные члены для соотношения между площадью и объемом позволяют достичь лучшего согласия с экспериментальными данными. Однако это слишком длинная история, и вряд ли стоит пересказывать ее здесь.
Ветвление нейронов.
Клетки Пуркинье в мозжечке млекопитающего имеют почти плоскую форму, а их дендриты образуют заполняющий плоскость лабиринт. По мере перехода от млекопитающего к голубям, крокодилам, лягушкам и рыбам плотность заполнения уменьшается [314]. Было бы замечательно, если бы это уменьшение соответствовало уменьшению размерностиЗакон Ролла.
У. Ролл [486] отмечает, что нейронные деревья с постоянным значениемКАКОВА ШИРИНА РЕКИ МИССУРИ?
Вернемся к рекам. Несмотря на концептуальную значимость моей «пеанианской» модели (см. главу 7), она может рассматриваться лишь как первое приближение. Эта модель, в частности, предполагает, что ширина реки обращается в нуль, тогда как реальные реки всегда имеют положительную ширину.
Необходимо найти ответ на очень важный эмпирический вопрос – сохраняется ли неизменным диаметрический показатель
Еще в 30-е г. Дж. Лейси заметил, что равенство
Равенство
Те, кто полагает, будто Леонардо знал обо всем на свете, несомненно, увидят показатель
VI САМООТРАЖАЮЩИЕСЯ ФРАКТАЛЫ
18 САМОИНВЕРСНЫЕ ФРАКТАЛЫ, АПОЛЛОНИЕВЫ СЕТИ И МЫЛО
Большая часть настоящего эссе посвящена фракталам, которые либо полностью инвариантны при преобразованиях подобия, либо, по меньшей мере, «почти» инвариантны. В результате у читателя может сложиться впечатление, что понятие фрактала неразрывно связано с самоподобием. Это решительно не так, однако поскольку мы только начинаем знакомиться с фрактальной геометрией, мы должны, прежде всего, рассмотреть своего рода фрактальные аналоги прямых линий евклидовой геометрии… мы можем называть их «линейными фракталами».
В главах 18 и 19 мы сделаем следующий шаг. В них вкратце описываются свойства фракталов, которые представляют собой соответственно наименьшие множества, инвариантные при геометрической инверсии, и границы наибольших ограниченных множеств, инвариантных при возведении в квадрат.
Оба этих семейства фундаментально отличаются от самоподобных фракталов. При должным образом выбранных преобразованиях масштабируемые фракталы остаются инвариантными, однако для их построения необходимо указать форму генератора и установить некоторые другие правила. С другой стороны, одного того, что фрактал «генерируется» каким-либо нелинейным преобразованием, часто бывает достаточно для определения, т. е. генерации, его формы. Кроме того, многие нелинейные фракталы ограничены, т. е. имеют заранее заданный конечный внешний порог