Читаем Фрактальная геометрия природы полностью

Обсуждая в главе 12 поверхность мозга, мы не принимали во внимание сеть аксонов, соединяющих различные его части. В случае мозжечка аксоны соединяют его поверхность с внешним веществом, и мы получаем в результате поверхность серого вещества, которая обволакивает дерево, состоящее из белого вещества. Я пересмотрел рассуждения главы 12 с учетом этого дерева и нашел, что полученные при этом поправочные члены для соотношения между площадью и объемом позволяют достичь лучшего согласия с экспериментальными данными. Однако это слишком длинная история, и вряд ли стоит пересказывать ее здесь.

Ветвление нейронов. Клетки Пуркинье в мозжечке млекопитающего имеют почти плоскую форму, а их дендриты образуют заполняющий плоскость лабиринт. По мере перехода от млекопитающего к голубям, крокодилам, лягушкам и рыбам плотность заполнения уменьшается [314]. Было бы замечательно, если бы это уменьшение соответствовало уменьшению размерности D; однако это не так, и предположение о фрактальной природе нейронов пока остается лишь предположением.

Закон Ролла. У. Ролл [486] отмечает, что нейронные деревья с постоянным значением dΔ, где Δ=1,5, электрически эквивалентны цилиндрам и, следовательно, весьма удобны для изучения. За подробностями рекомендую обратиться к [238].

КАКОВА ШИРИНА РЕКИ МИССУРИ?

Вернемся к рекам. Несмотря на концептуальную значимость моей «пеанианской» модели (см. главу 7), она может рассматриваться лишь как первое приближение. Эта модель, в частности, предполагает, что ширина реки обращается в нуль, тогда как реальные реки всегда имеют положительную ширину.

Необходимо найти ответ на очень важный эмпирический вопрос – сохраняется ли неизменным диаметрический показатель Δ на протяжении всех разветвлений реки? Если показатель Δ определен, возникает другой вопрос: положительна разность 2−Δ или равна нулю? Я не знаю прямого способа ответить на эти вопросы, однако известно, что объем стока речной воды (Q) остается при разветвлениях постоянным, следовательно, вполне может заменить величину dΔ. Мэддок (см. [297]) обнаружил, что d~Q1/2, отсюда Δ=2. Кроме того, глубина реки пропорциональна Q0,4, а скорость течения пропорциональна Q0,1. И сумма показателей не обманывает наших ожиданий: 0,5+0,4+0,1=1.

Еще в 30-е г. Дж. Лейси заметил, что равенство Δ=2 верно и для системы устойчивых ирригационных каналов в Индии, которая ставит перед специалистами по гидравлике вполне определенные задачи. Значит, можно надеяться на появление какого-нибудь гидромеханического объяснения, которое станет для рек тем же, чем стало объяснение Мюррея для легких.

Равенство Δ=2 имеет еще одно интересное следствие: если изобразить реки на карте в виде лент, правильно передав их относительную ширину, то, исходя из формы рек, угадать масштаб карты невозможно. (Угадать масштаб невозможно и на карте речных излучин, но это уже совсем другая история.)

Те, кто полагает, будто Леонардо знал обо всем на свете, несомненно, увидят показатель Δ=2 в продолжение цитаты, которая открывала эту главу: «Совокупная ширина всех ветвей (потока) воды на любой стадии его течения равна ширине основного потока (при условии, что скорости течения всех потоков одинаковы)».

VI САМООТРАЖАЮЩИЕСЯ ФРАКТАЛЫ

18 САМОИНВЕРСНЫЕ ФРАКТАЛЫ, АПОЛЛОНИЕВЫ СЕТИ И МЫЛО

Большая часть настоящего эссе посвящена фракталам, которые либо полностью инвариантны при преобразованиях подобия, либо, по меньшей мере, «почти» инвариантны. В результате у читателя может сложиться впечатление, что понятие фрактала неразрывно связано с самоподобием. Это решительно не так, однако поскольку мы только начинаем знакомиться с фрактальной геометрией, мы должны, прежде всего, рассмотреть своего рода фрактальные аналоги прямых линий евклидовой геометрии… мы можем называть их «линейными фракталами».


В главах 18 и 19 мы сделаем следующий шаг. В них вкратце описываются свойства фракталов, которые представляют собой соответственно наименьшие множества, инвариантные при геометрической инверсии, и границы наибольших ограниченных множеств, инвариантных при возведении в квадрат.

Оба этих семейства фундаментально отличаются от самоподобных фракталов. При должным образом выбранных преобразованиях масштабируемые фракталы остаются инвариантными, однако для их построения необходимо указать форму генератора и установить некоторые другие правила. С другой стороны, одного того, что фрактал «генерируется» каким-либо нелинейным преобразованием, часто бывает достаточно для определения, т. е. генерации, его формы. Кроме того, многие нелинейные фракталы ограничены, т. е. имеют заранее заданный конечный внешний порог Ω<∞. Те, кого по каким-либо причинам не устраивала неограниченность Ω, будут, несомненно, обрадованы этим обстоятельством.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература