А что, если генетика попросят определить семью, в которой больше всего поколений участвует в вечеринке, при этом возраст никого из участников он знать не будет? Предположим, одна из семей здесь состоит из прадеда, деда, отца и сына – то есть из четырех поколений. Другую семью тоже представляют четыре человека – отец с тремя детьми, однояйцевыми близнецами – то есть всего два поколения. Можем ли мы определить в толпе семью с самым большим числом поколений, не зная имен и не видя лиц? Простой подсчет родственников не сработает: семьи отца с тройняшками и прадеда с его разновозрастными потомками здесь равновелики.
Гены и мутации предоставляют нам умное решение. Мутации накапливаются в поколениях – то есть по мере увеличения межпоколенческого разрыва, – а значит, семья с самым высоким
Уилсон осознал, что эту технику можно применить не только к отдельной семье, но и ко всей популяции организмов. Вариации генов можно использовать для построения карты родственных связей, а генетическое разнообразие – для вычисления старейших популяций внутри вида: генетически более разнородная группа будет древнее.
На основе геномной информации можно было бы оценивать возраст любого вида – если бы не одно но. Метод Уилсона работал бы безошибочно в случае образования генетических вариаций исключительно в результате мутаций. Но ученый знал, что хромосомы представлены в большинстве клеток двумя копиями и в ходе кроссинговера копии могут обмениваться генами, генерируя вариации и разнообразие альтернативным способом. Этот способ повышения числа различий неизбежно вносил бы путаницу в вычисления. Уилсон понял, что для построения идеальных генетических линий нужны куда более точные молекулярные часы – такие сегменты человеческого генома, которые по своей природе не подвергались бы перестройкам и кроссинговеру – одинокие, уязвимые закутки генома, изменяющиеся только за счет накопления мутаций.
Но где искать такие непарные и чувствительные к мутациям участки? Уилсон нашел гениальное решение. Гены человека хранятся в клеточном ядре – но есть одно исключение. Каждая клетка содержит в цитоплазме структуры, которые производят энергию и называются
У митохондриального генома нет второй копии иного происхождения, с которой мог бы произойти кроссинговер, и вообще эти молекулы ДНК рекомбинируют редко. Мутации митохондриальных генов переходят невредимыми из поколения в поколение, постепенно накапливаясь, что делает их идеальным генетическим хронометром. Самое главное, как понял Уилсон, этот метод реконструкции эпох абсолютно самодостаточен и объективен: он не опирается ни на палеонтологическую летопись, ни на лингвистические родословные, ни на геологические слои, ни на географические карты или антропологические исследования. Мы, живые люди, носим эволюционную историю своего вида прямо внутри генома, как если бы постоянно носили в кошельке фотографии каждого из своих предков.
С 1985 по 1995 год Уилсон со своими студентами учился применять этот метод к человеческим существам (сам он умер в 1991-м от лейкемии, но студенты продолжили работу). Результаты этих исследований были поразительными сразу по трем причинам. Во-первых, когда Уилсон измерил общее разнообразие[916]
человеческого митохондриального генома, оно оказалось на удивление низким – ниже, чем у соответствующего генома шимпанзе. Другими словами, современные люди существенно моложе и существенно гомогеннее, чем шимпанзе (возможно, на взгляд человека, все обезьяны похожи друг на друга, но для проницательного шимпанзе как раз таки все люди одинаковы). Обратный отсчет показал, что возраст человека составляет приблизительно 200 тысяч лет – крошечная вспышка, миллисекунда в масштабах эволюции.