О генетической модификации зародышевых линий в конце 1990-х даже не помышляли: тогда не было никакой сколь-нибудь надежной технологии, позволяющей вносить генетические изменения в человеческие сперматозоиды и яйцеклетки. Но испытания модификации соматических клеток тоже были остановлены. «Биотехнологическая смерть» Джесси Гелсингера[1159]
, как описал ееНо генотерапия возвращалась – маленькими, осторожными шажками. Десятилетие видимого застоя между 1990-м и 2000-м на самом деле было десятилетием самоанализа и переосмысления. Эксперты прежде всего дотошно препарировали прискорбный список ошибок, допущенных в испытаниях с Гелсингером. Почему введение предположительно безвредного вируса, доставляющего терапевтический ген в клетки печени, вызвало столь разрушительную, фатальную реакцию? По мере того как врачи, ученые и представители госрегуляторов продирались через детали испытания, причины его провала становились все очевиднее. Использованный вирусный вектор не был должным образом проверен на людях. Но самое главное, иммунный ответ на него у Гелсингера был предсказуем. Мальчик, видимо, уже подвергался естественному воздействию того же штамма аденовируса, что использовали в генотерапевтическом эксперименте. Его бурная иммунная реакция была не отклонением, а совершенно обычным ответом организма, борющегося с патогеном, первое столкновение с которым уже случилось когда-то во время «простуды». Выбрав типичный, распространенный человеческий вирус для доставки гена, генотерапевты допустили критический просчет: они не учли, что векторная конструкция попадет в человеческое тело с его уникальной историей, шрамами и памятью о прежних воздействиях. «Как могла столь прекрасная затея закончиться так чудовищно?» – вопрошал Пол Гелсингер. Теперь мы знаем, как и почему: потому что ученые – в поисках одного лишь прекрасного – не были готовы к катастрофе. Доктора, раздвигающие границы человеческой медицины, забыли учесть обычную «простуду».
В течение 20 лет после смерти Джесси Гелсингера инструментарий первых генотерапевтических испытаний по большей части заменили технологиями второго и третьего поколений. Теперь для доставки генов в клетки человека применяют другие вирусы, разработаны и новые методы отслеживания доставки. Многие из этих вирусов специально отбирали так, чтобы с ними было удобно работать в лаборатории и чтобы они не вызывали сокрушительных, выходящих из-под контроля иммунных реакций, как у Джесси.
В 2014 году знаковая публикация[1160]
вО возможности генной терапии гемофилии впервые заговорили в середине 1980-х. Так как проблема кроется в недостатке функционального свертывающего белка, было бы рациональным использовать вирус для доставки в клетки нормального гена – чтобы тело смогло производить недостающий белок и восстановить свертываемость крови. В начале 2000-х, после почти 20 лет задержки, ученые решили опробовать генотерапию при гемофилии. Два основных варианта гемофилии различаются факторами свертывания, которых недостает в крови. Для тестирования генотерапии выбрали гемофилию B, при которой мутирует ген фактора IX.
Протокол испытаний был прост: 10 мужчинам с тяжелой формой заболевания однократно вводили порцию вируса, несущего ген фактора IX. Затем несколько месяцев отслеживали содержание в их крови синтезируемого с вектора белка. Примечательно, что в этих исследованиях проверяли не только безопасность, но и эффективность: у пациентов, получивших вирус, фиксировали эпизоды кровотечения и потребность в инъекциях фактора IX. Хотя введение терапевтического гена повысило концентрацию фактора IX лишь до 5 % от нормы, на эпизоды кровотечения это оказало поразительное влияние. Число таких случаев сократилось на 90 %, и на столько же снизилась потребность в инъекциях фактора IX. Эффект сохранялся более трех лет.