Во-первых, математические предметы, такие, как четное и нечетное и другие, так же как и «курносое», указывают на материальный субстрат, хотя в случае математических предметов это будет особого рода субстрат или материя. «В отвлеченных предметах, – говорит Аристотель, – прямое воспринимается так же, как курносое: ведь прямая линия связана с плотным» (О душе, III, 4, 429b 18). «Плотное» здесь есть особого рода «математическая» материя прямого.
Во-вторых, курносое используется Аристотелем для подчеркивания противоположности между физической формой и чисто абстрактной – математической – формой. Пожалуй, это второе значение примера с курносым носом более часто используется Аристотелем, и именно оно служит ему моделью для демонстрации существенного различия между физикой и математикой. «Курносое» выступает как модель телесной, природной, физической формы вообще. «Ведь плоть не существует без материи, – говорит Аристотель, – а как курносое она есть вот это вот в этом» (О душе, III, 4, 429b 13–14). «Курносое» – модель
Математика же изучает не такую конкретную форму, как «курносое», а форму абстрактную – подобную «криволинейному» (καμπύλον, Физика, II, 2, 194а 6) или «вогнутому» (κοῖλον, О душе III, 7 431b 15). Согласно Аристотелю, математические науки занимаются объектами такого абстрактного рода, как «криволинейное» или «вогнутое», а физика исследует объекты более конкретного типа, форма которых неотделима от их чувственно-данной материи.
Двойное звучание примера с «курносым носом» показывает трудности аристотелевской попытки радикально разграничить физику и математику. Мы видели, что пример этот амбивалентен: он может использоваться как в позитивном плане, демонстрируя, что и математике не чужда материя, хотя и особого типа, так и в негативном, контрастном плане, подчеркивая, что физические определения неотделимы от присутствия в них материи чувственно воспринимаемой. Пример с курносостью, таким образом, по существу не только противопоставляет физике математику, но и сближает их.
Анализируя апории этого плана, Сюзанна Мансьон пришла к выводу, что этот пример выполняет свою функцию в аристотелевской системе небезупречно потому, что Аристотель не свободен от платонизма, который он стремится преодолеть, вырабатывая свой нематематический теоретический подход к физике, к природознанию в целом [92]. В частности, Аристотель не мог до конца преодолеть восприятия математических форм как самых рациональных, самых адекватных человеческому пониманию вещей вообще. Отсюда проистекают трудности обоснования введения в физику материального фактора, притом материи чувственно воспринимаемой, «физической материи», как в одном месте говорит Аристотель[54]
. Другим препятствием к созданию последовательной нематематической концепции было использование аналогии природы и искусства (τέχνη). Раз в ремесле, искусстве ремесленник может мыслить форму без материи, то это означает в силу такой аналогии, что самостоятельное существование формы возможно и в природе. Мансьон считает, что более решительный антиплатонизм привел бы Аристотеля к действительно последовательной нематематической концепции науки, так как только понятие об органическом дает надежную альтернативу математическому и механистическому редукционизму[55]. Действительно, мы видели, что органические масштабы и примеры Аристотель широко использует в физике. Все примеры, где он противопоставляет физические предметы математическим – это примеры органических образований. Однако мы не можем считать, что «последовательный» аристотелизм, формулирующий однозначное господство органического телеологического подхода, был бы более продуктивным в научном плане, чем «непоследовательные» и «эклектичные» учения Стагирита. Такая последовательность по существу означала бы ликвидацию одной из основных привлекательных и сильных черт «живого», подлинного Аристотеля – поискового проблематизма его мышления, его синтетизма in statu nascendi, а не в виде готовой системы.