Читаем Гены и судьбы полностью

Экспериментаторы широко изучали сходство и различие мышечной дистрофии у животных и человека (типы наследования, электрофизиология, биохимия, морфология мышц и т. д.). Работы в основном проводились на мышах. Однако при использовании обычных методов экспериментальной биологии существенного раскрытия природы болезни с использованием экспериментальных моделей миопатии сделано не было. Но вот наступил новый период в изучении наследственной патологии — молекулярно-генетический. Мутации в гене, приводящие к миопатии Дюшена, были идентифицированы. Соответственно был выделен и нормальный ген. Благодаря изучению продуктов этого гена был получен белок, синтез которого и нарушается при мутации, а его отсутствие ведет к миопатии. Белок этот назвали дистрофином. Получили и антитела к нему, благодаря чему теперь его нетрудно и выявлять.

У больных детей с миопатией Дюшена мутантный ген не обеспечивает синтеза белка-дистрофина, а отсутствие его вызывает со временем распад мышц с соответствующей клинической картиной заболевания.

Расшифровка молекулярно-генетической природы и механизма развития миопатии Дюшена — один из примеров нового направления исследований, которое называется «обратной генетикой», или «генетикой наоборот». Вначале был выделен ген, потом найден признак (белок), за который он отвечает. В классической генетике поиск проводился всегда по направлению от элементарно наследуемого признака к гену. «Обратная генетика» идет от идентификации гена к идентификации контролируемого признака.

Итак, когда дистрофин был открыт, решено было посмотреть, какие же биологические модели заболевания (у каких животных) соответствуют человеческому. С этой целью американские генетики (Б. Коупер и соавторы) решили определить, есть ли продукты человеческого гена у собак и мышей. Оказалось, что у здоровых собак обнаруживаются точно такие же продукты гена (РНК и дистрофии), как и у здоровых людей. У больных же собак в мышцах не выявляется ни РНК, комплементарной нормальному гену, ни белка дистрофина. Следовательно, за дистрофию у собак отвечает тот же ген, то есть с той же последовательностью нуклеотидов, что и у человека. Следовательно, заболевание у собак может служить моделью для апробирования лекарственных и других методов лечения, а также для проведения экспериментальной генной терапии.

Совсем другая картина наблюдается у мышей. Ген, отвечающий за выработку дистрофина у нормальных мышей, есть, но дистрофии обнаруживается и у миопатических мышей. Следовательно, миопатия у мышей обусловлена мутациями (их несколько) в других генах, а не в гене дистрофина. В этом, собственно, и состоит принципиальное различие между «мышиной» миопатией и заболеванием у собак.

Генетические знания, как и любые другие, не сегодня-завтра преломляются в практические дела. В генетике животных — это новые породы, в генетике растений — новые сорта, в генетике микроорганизмов — новые штаммы. Ну а в достижениях генетики человека нуждается прежде всего медицина. Ведь наследственные болезни встречаются в практике врача любой специальности. Давайте разберемся в них поподробнее, а начнем с причин (учение о причинах называют этиологией) или, как говорят, «от печки».

Причина наследственной болезни — мутация. Но какая (или какие)? Ведь мы уже говорили о них в одной из предыдущих глав!

Любые мутации, вызывающие изменения функций отдельных генов, группы генов или всего генетического аппарата, приводят к болезням. Если изменения произошли на молекулярном уровне гена и изменена его функция, то генная мутация вызовет болезнь. Именно эта группа болезней (их называют генными) и была в первую очередь эмпирически подмечена врачами в родословных; именно ее изучение заложило основы медицинской генетики и подтвердило правильность законов Менделя применительно к человеку. Но, наверное, не так уж много давала бы такая констатация для практикующего врача, если бы не углубленный анализ наследственных болезней под углом зрения их этиологии.

Сколь быстро растет список наследственных болезней, можно судить по тому, что еще в прошлом веке медики знали один-два десятка наследственных болезней, в 50-х годах нашего столетия уже 400, а сегодня — более трех тысяч. Все они, конечно, были и раньше, но «прятались» в группах других болезней, под другими названиями. Сложность «инвентаризации» наследственных болезней заключается в том, что конкретные их формы встречаются редко. И если болезнь описана в одной-двух семьях в Англии, в двух-трех в России и т. д., нелегко решить — одна и та же это болезнь (одна мутация) или разные.

Генетический анализ болезни можно провести при условии родственных связей между семьями, в которых есть больные. А по-другому раньше и нельзя было решить вопрос — о каком же заболевании идет речь в конкретной семье.

Перейти на страницу:

Все книги серии Эврика

Похожие книги