Сама топология, можно сказать, началась именно с листа Мёбиуса. Слово это придумал Иоганн Бенедикт Листинг, профессор Геттингенского университета, который — и это далеко не всем известно — почти в то же время, что и его лейпцигский коллега, предложил в качестве первого примера односторонней поверхности уже знакомую нам единожды перекрученную ленту. Наука та молодая и потому озорная. Иначе не скажешь о тех правилах игры, которые в ней приняты. Любую фигуру тополог имеет право сгибать, скручивать, сжимать и растягивать — делать с ней что угодно, только не разрывать и не склеивать. И при этом он будет считать, что ничего не произошло — все ее свойства остались неизменными. Для него не имеют никакого значения ни расстояния, ни углы, ни площади. А что же его интересует? Самые общие свойства фигур, которые не изменяются и при каких преобразованиях, если только не случается катастрофы — "взрыва" фигуры. Потому иногда топологию называют "геометрией непрерывности". Она известна и под именем "резиновая геометрия", потому то топологу ничего не стоит поместить все свои фигуры на поверхность детского надувного шарика и без конца менять его форму, следя лишь за тем, чтобы шарик ie лопнул. А то, что при этом прямые линии, например стороны треугольника, превратятся в кривые, для тополога глубоко безразлично.
"Сотри случайные черты, и ты увидишь — мир прекрасен", — писал Александр Блок. Тополог всегда готов внять подобному призыву — во всех окружающих его предметах он ищет некие важные только ему одному качества. Например, непрерывность. Это еще одно топологическое свойство. Если вы сравните схему самолетных маршрутов и географическую карту, о убедитесь, что масштаб Аэрофлотом далеко не выдержан — скажем, Свердловск может оказаться на полпути от Москвы до Владивостока. И все-таки что-то общее между географической картой и топологической схемой (а транспортники — бессознательные топологи) есть. Москва действительно связана со Свердловском, а Свердловск — с Владивостоком. И потому тополог может как угодно деформировать карту, лишь бы точки, ранее бывшие соседями, оставались одна подле другой и дальше. А значит, с топологической точки зрения круг неотличим от квадрата или треугольника, потому что их легко преобразовать один в другой, не нарушая непрерывности. Взгляните с этой точки зрения на нашего старого знакомца и увидите: на листе Мёбиуса любая точка может быть соединена с любой другой точкой. И при этом муравью на гравюре Эсхера ни разу не придется переползать через край "ленты". Разрывов нет — непрерывность полная.
Но куда интереснее другое свойство — связность. Если квадрат полоснуть бритвой от стороны к стороне, то он, естественно, распадается на два отдельных куска. Точно так же любой удар ножом разделит яблоко на две части. Но вот чтобы располовинить кольцо, нужно уже два разреза. И два раза придется резать бублик, если вы хотите угостить им двух друзей. А телефонный диск можно десять раз рассечь ножом от одной замкнутой кривой до другой, а он все останется единым целым. Поэтому любой тополог скажет вам, что квадрат и ромашка — односвязны, кольцо и оправа от очков — двусвязны, а всяческие решетки, диски с отверстиями и подобные сложные фигуры — многосвязны. Ну а наш лист Мёбиуса? Конечно, двусвязен, ведь фокус в том и состоял, что, будучи разрезан вдоль, он превращался не в два отдельных кольца, а в одну целую ленту. Впрочем (и на этом тоже были построены фокусы), если перекрутить ленту на два оборота, то лист становится односвязным. Три оборота — помните ленту, завязавшую саму себя в узел? — связность снова равна двум. А четыре оборота? Да вы, верно, уже догадались, как дальше станут развиваться события.
Связность принято оценивать числом Бетти, названным так в честь известного итальянского математика и физика. Иногда пользуются другой величиной — эйлеровой характеристикой — с той же целью: определить число сквозных, от края и до края, разрезов, которое выдерживает фигура, не распадаясь при этом на части,
"От края и до края..." — эти слова из песни, любимой нами с детства, можно рассматривать не просто как поэтический образ. В них, как мы видим, заложен еще и глубокий топологический смысл. Лист бумаги — модель двусторонней односвязной (число Бетти равно единице) поверхности с одним краем. Его можно смять и бросить в урну, но все равно число краев (и сторон) останется прежним. Но у сферы краев нет. Нет их и у тора, говоря попросту, бублика. Зато нарисованное на бумаге кольцо имеет целых два края. Один край и у мёбиусова листа, как одна у него сторона. И снова — сделайте его из какой угодно эластичной резины и растяните до любых размеров — топологические свойства, этот незыблемый фундамент самого естества геометрической фигуры, останутся неизменными.
Не много ли неожиданных и странных свойств? Тогда еще только два, быть может, самых любопытных.