Читаем Григорий Перельман и гипотеза Пуанкаре полностью

Страсть великого французского ученого к построению фундаментальных основ математической науки и его релятивизм, отраженный в зеркале собственного философского учения — конвенционализма, привели в итоге к довольно необычной гипотезе строения Мира. В истории науки эту абстрактную математическую проблему, приводящую к важнейшим космологическим выводам, так часто и называют — топологическая гипотеза (теорема, задача, проблема) Пуанкаре.

С помощью молодого математика и непременного члена клуба знатоков «Что? Где? Когда?» Сергея Игоревича Николенко вспомним, что все началось с исследований, которые Пуанкаре вел в области алгебраической геометрии. Он работал над одним из краеугольных камней этой науки — теорией гомологии, особого класса топологических инвариантов. В 1900 году он опубликовал статью, в которой доказывал, что если у трехмерной поверхности гомология совпадает с гомологией сферы, то и сама поверхность — сфера; на самом деле это утверждение даже более сильное, чем утверждение гипотезы Пуанкаре.

Однако в его рассуждения вкралась ошибка, которую он сам и нашел, к 1904 году разработав важнейшее понятие фундаментальной группы и построив на его базе контрпример

-48-

к собственной теореме. Тогда же он наконец поставил вопрос правильно.

Достаточно долго на гипотезу не обращали внимания. Интерес к ней пробудил Джон Генри Константин Уайтхед (1904–1960) — выдающийся английский математик, один из основателей теории гомотопий. Не следует путать его с дядей Альфредом Уайтхедом, тоже математиком, но специализировавшемся на логике и алгебре, написавшем вместе с Бертраном Расселом знаменитую монографию «Принципы математики», который в 30-е годы прошлого века объявил о том, что нашел-таки доказательство теоремы Пуанкаре. К сожалению, представленные расчеты в итоге оказались неверны, однако в процессе поиска и попыток исправить свои неточности он обнаружил интереснейшие классы трехмерных поверхностей и значительно продвинул теорию, которая позднее получила название топологии малых (или низших) размерностей. В 1950-1960-е годы всплеск интереса к проблеме вновь породил несколько ошибочных заявлений о том, что теорему удалось доказать, но после всесторонних проверок математики наконец поняли, что гипотеза Пуанкаре при своей внешней простоте, подобно знаменитой теореме Ферма, содержит множество подводных камней.

К тому времени топология низших размерностей стала отдельной ветвью математики и аналоги задачи Пуанкаре были доказаны для более высоких размерностей. Этому послужила удивительная причина: оказалось, что в невообразимом мире многих измерений эта часть геометрии устроена гораздо проще! Тем временем привычный нам «Трехмерный случай» продолжал оставаться камнем преткновения.

Гипотеза Пуанкаре является одной из наиболее известных задач топологии. Она дает достаточное условие того, что пространство является трехмерной сферой с точностью до деформации.

В гипотезе Пуанкаре утверждает, что:

«Всякое односвязное компактное трехмерное многообразие без края гомеоморфно трехмерной сфере».

Гипотеза Пуанкаре — одна из тех задач, в которых даже ошибочные решения приводят к появлению новых областей

-49-

математики; в этом с ней может соперничать разве что великая теорема Ферма. Кроме общедоступности формулировки у задачи Пуанкаре есть еще и внешние параллели с теоремой Ферма. Обе математические проблемы были сформулированы великими математиками вне сферы их основных интересов и были решены гениальными одиночками после многолетнего глубокого погружения в задачу.

Многочисленные книги по занимательной математике, мимо которых мало кто прошел в детстве, любят рассказывать о топологии — странной науке, в которой два предмета сравниваются только по количеству дырок в них: чайная чашка ничем не отличается от бублика, а апельсин — от Солнца. На самом деле топология — очень глубокая наука и объекты и свойства, которые она изучает, весьма многочисленны и разнообразны. Прежде чем выяснить, в чем состоит гипотеза Пуанкаре, необходимо разобраться именно в топологии, к которой эта гипотеза и относится.

Топология многообразий занимается свойствами поверхностей, которые не меняются при определенных деформациях. Приведем классический пример. Предположим, что на столе лежит бублик и стоит пустая чашка. С точки зрения геометрии и здравого смысла это разные объекты хотя бы потому, что выпить кофе из бублика не получится при всем желании.

Рис. 19. Гипотеза Перельмана для топологии низших измерений

Если представить себе ячейку высокоразмерного континуума и постепенно избавляться от «лишних» изменений,

-50-

то на определенном этапе «уплощенное» пространство начнет автомодельным образом «само по себе» сворачиваться в идеальную сферу.

Перейти на страницу:

Похожие книги

Адмирал Советского Союза
Адмирал Советского Союза

Николай Герасимович Кузнецов – адмирал Флота Советского Союза, один из тех, кому мы обязаны победой в Великой Отечественной войне. В 1939 г., по личному указанию Сталина, 34-летний Кузнецов был назначен народным комиссаром ВМФ СССР. Во время войны он входил в Ставку Верховного Главнокомандования, оперативно и энергично руководил флотом. За свои выдающиеся заслуги Н.Г. Кузнецов получил высшее воинское звание на флоте и стал Героем Советского Союза.В своей книге Н.Г. Кузнецов рассказывает о своем боевом пути начиная от Гражданской войны в Испании до окончательного разгрома гитлеровской Германии и поражения милитаристской Японии. Оборона Ханко, Либавы, Таллина, Одессы, Севастополя, Москвы, Ленинграда, Сталинграда, крупнейшие операции флотов на Севере, Балтике и Черном море – все это есть в книге легендарного советского адмирала. Кроме того, он вспоминает о своих встречах с высшими государственными, партийными и военными руководителями СССР, рассказывает о методах и стиле работы И.В. Сталина, Г.К. Жукова и многих других известных деятелей своего времени.Воспоминания впервые выходят в полном виде, ранее они никогда не издавались под одной обложкой.

Николай Герасимович Кузнецов

Биографии и Мемуары
100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары
100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии