Читаем Язык программирования C#9 и платформа .NET5 полностью

На заметку! В рамках платформ .NET/.NET Core класс System.Object всегда находится на вершине любой иерархии классов, являясь первоначальным родительским классом, и определяет общую функциональность для всех типов (как подробно объясняется в главе 6).

В мире ООП существует еще одна форма повторного использования кода: модель включения/делегации, также известная как отношение "имеет" ("has-a") или агрегация. Такая форма повторного использования не применяется для установки отношений "родительский-дочерний". На самом деле отношение "имеет" позволяет одному классу определять переменную-член другого класса и опосредованно (когда требуется) открывать доступ к его функциональности пользователю объекта.

Например, предположим, что снова моделируется автомобиль. Может возникнуть необходимость выразить идею, что автомобиль "имеет" радиоприемник. Было бы нелогично пытаться наследовать класс Car (автомобиль) от класса Radio (радиоприемник) или наоборот (ведь Car не "является" Radio). Взамен есть два независимых класса, работающих совместно, где класс Car создает и открывает доступ к функциональности класса Radio:

class Radio

{

  public void Power(bool turnOn)

  {

    Console.WriteLine("Radio on: {0}", turnOn);

  }

}

class Car

{

  // Car 'имеет' Radio.

  private Radio myRadio = new Radio();

  public void TurnOnRadio(bool onOff)

  {

    // Делегировать вызов внутреннему объекту.

    myRadio.Power(onOff);

  }

}

Обратите внимание, что пользователю объекта ничего не известно об использовании классом Car внутреннего объекта Radio:

// Call is forwarded to Radio internally.

Car viper = new Car();

viper.TurnOnRadio(false);

<p id="AutBody_Root227">Роль полиморфизма</p></span><span>

Последним основным принципом ООП является полиморфизм. Указанная характерная черта обозначает способность языка трактовать связанные объекты в сходной манере. В частности, данный принцип ООП позволяет базовому классу определять набор членов (формально называемый полиморфным интерфейсом), которые доступны всем наследникам. Полиморфный интерфейс класса конструируется с применением любого количества виртуальных или абстрактных членов (подробности ищите в главе 6).

Выражаясь кратко, виртуальный член — это член базового класса, определяющий стандартную реализацию, которую можно изменять (или более формально переопределять) в производном классе. В отличие от него абстрактный метод — это член базового класса, который не предоставляет стандартную реализацию, а предлагает только сигнатуру. Если класс унаследован от базового класса, в котором определен абстрактный метод, то такой метод должен быть переопределен в производном классе. В любом случае, когда производные классы переопределяют члены, определенные в базовом классе, по существу они переопределяют свою реакцию на тот же самый запрос.

Чтобы увидеть полиморфизм в действии, давайте предоставим некоторые детали иерархии фигур, показанной на рис. 5.3. Предположим, что в классе Shape определен виртуальный метод Draw(), не принимающий параметров. С учетом того, что каждой фигуре необходимо визуализировать себя уникальным образом, подклассы вроде Hexagon и Circle могут переопределять метод Draw() по своему усмотрению (см. рис. 5.3).

После того как полиморфный интерфейс спроектирован, можно начинать делать разнообразные предположения в коде. Например, так как классы Hexagon и Circle унаследованы от общего родителя (Shape), массив элементов типа Shape может содержать любые объекты классов, производных от этого базового класса. Более того, поскольку класс Shape определяет полиморфный интерфейс для всех производных типов (метод Draw() в данном примере), уместно предположить, что каждый член массива обладает такой функциональностью.

Рассмотрим следующий код, который заставляет массив элементов производных от Shape типов визуализировать себя с использованием метода Draw():

Shape[] myShapes = new Shape[3];

myShapes[0] = new Hexagon();

myShapes[1] = new Circle();

myShapes[2] = new Hexagon();

foreach (Shape s in myShapes)

{

  // Использовать полиморфный интерфейс!

  s.Draw();

}

Console.ReadLine();

На этом краткий обзор основных принципов ООП завершен. Оставшийся материал главы посвящен дальнейшим подробностям поддержки инкапсуляции в языке С#, начиная с модификаторов доступа. Детали наследования и полиморфизма обсуждаются в главе 6.

Перейти на страницу:

Похожие книги

Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных
Разработка приложений в среде Linux. Второе издание
Разработка приложений в среде Linux. Второе издание

Книга известных профессионалов в области разработки коммерческих приложений в Linux представляет СЃРѕР±РѕР№ отличный справочник для широкого круга программистов в Linux, а также тех разработчиков на языке С, которые перешли в среду Linux из РґСЂСѓРіРёС… операционных систем. РџРѕРґСЂРѕР±но рассматриваются концепции, лежащие в основе процесса создания системных приложений, а также разнообразные доступные инструменты и библиотеки. Среди рассматриваемых в книге вопросов можно выделить анализ особенностей применения лицензий GNU, использование СЃРІРѕР±одно распространяемых компиляторов и библиотек, системное программирование для Linux, а также написание и отладка собственных переносимых библиотек. Р

Майкл К. Джонсон , Эрик В. Троан

Программирование, программы, базы данных
C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT