На первый взгляд, это чисто человеческая стратегия. Как может бот самостоятельно ей научиться? Ответ: это неизбежно. Иногда игра зависит от холодного расчета гораздо больше, чем мы думаем. Такую же закономерность фон Нейман обнаружил в отношении блефа. Это не каприз людской натуры, а тактика, необходимая при оптимальной стратегии.
В своей статье в
В том, что люди воспринимают покерных ботов как самостоятельных личностей, а не продукт деятельности программиста, возможно, нет ничего странного. В конце концов, самые лучшие компьютерные игроки превосходят в мастерстве своих создателей. В бота не нужно загружать большой объем информации – он научится всему сам. Таким образом, даже мало что понимающий в игровых стратегиях разработчик способен создать сильного виртуального покериста. «Можно делать удивительные вещи, зная при этом совсем мало», – отмечал Джонатан Шеффер. По правде говоря, ученые из Университета Альберты, хоть и создали одного из лучших покерных ботов в мире, сами были далеко не блестящими игроками. «Большинство из нас вообще не разбираются в покере», – признавался один из разработчиков, Майкл Джонсон.
В игре с лимитированными ставками созданный Далем бот мог научиться побеждать почти любого, однако умную машину поджидала ловушка. Согласно принятым в Лас-Вегасе правилам, игроки-компьютеры должны вести себя одинаково по отношению ко всем соперникам и не подстраиваться под опытных игроков или новичков. Это означало, что ради допуска в казино бот Даля должен был пожертвовать определенной долей своего мастерства. С точки зрения программы, необходимость следовать фиксированной стратегии существенно осложняет задачу. Дав машине консервативный взрослый мозг вместо восприимчивого детского, вы лишаете ее возможности научиться извлекать выгоду из человеческих слабостей и таким образом отбираете у нее огромное преимущество, потому что слабостей у людей предостаточно.
В 2010 году на сайте
Согласно теории игр, оптимальной стратегией для «камень-ножницы-бумага» является выбор наугад. Но практика показывает, что у любителей «камень-ножницы-бумага» с оптимальностью дела обстоят неважно. В 2014 году Чжицзянь Ван и группа исследователей из Чжэцзянского университета установили, что участники этой игры стремятся следовать определенному поведенческому сценарию. Ученые задействовали для эксперимента 360 студентов, которых разделили на группы, и каждой группе предложили сыграть по 300 раундов. Выяснилось, что многие участники придерживались стратегии «победил – закрепил, проиграл – поменял». Выиграв раунд, они повторяли свои действия в следующей игре, а проиграв – выбрасывали в следующем раунде фигуру, которая их только что побила. На протяжении эксперимента участники в среднем выбрасывали каждую фигуру одинаковое число раз, но их выбор, очевидно, не был хаотичным.
Ирония состоит в том, что даже случайные последовательности содержат в себе неслучайные закономерности. Помните нерадивых журналистов из Монте-Карло, которые наобум писали выпавшие числа рулетки? Создать последовательность, которая сошла бы за хаотичную, не так-то легко. Во-первых, для этого необходимо, чтобы красное и черное выпадали приблизительно одинаковое число раз. С этой задачей журналисты худо-бедно справились, и первый этап проверки их данные у Карла Пирсона прошли. Однако журналисты оплошали с чередованием цветов, которое было более частым, чем в настоящих произвольных последовательностях.
Даже если вам известно, как должна выглядеть хаотичность, и вы пытаетесь чередовать цвета (или камень, ножницы и бумагу) должным образом, ваша способность создавать случайный ряд символов будет ограничена памятью. Если вам дадут взглянуть на последовательность цифр и затем попросят повторить их, сколько вы сможете назвать? Пять? Десять? Пару десятков?