А что можно сказать о мире, где пространственных измерений
Поэтому неудивительно, что мы очутились в трехмерном мире. (Физики называют это «антропный принцип»). И нечего роптать. В фундаментальном смысле трехмерное пространство – самое богатое из всех возможных. Чем оно лучше одномерного и двумерного, очевидно: в Лайнландии и Флатландии нет места для интересной сложности. (Вспомните, как визуально бедна жизнь во Флатландии, где все предметы выглядят как отрезки.) Что до пространств с четырьмя и больше измерениями, там все слишком «легко»: так много степеней свободы, так много вариантов поворотов и движений, что любые сложности сразу реконструируются и исчезают. Нужный градус творческого напряжения достигается лишь в трехмерном пространстве – вот, наверное, почему математики считают его самым интересным и трудным для изучения.
Возьмем хотя бы гипотезу Пуанкаре, одну из величайших и самых неподатливых задач современной математики. В целом она гласит, что любое
Приучив себя к мысли о «более пространственном пространстве», чем наш трехмерный мир, мы, несомненно, расширили границы своего воображения, и это способствовало научному прогрессу. И теперь мы, несомненно, можем понять, почему Квадрату, не говоря уже о всевозможных теософах, платониках и кубистах, так хотелось вознестись в чертоги четвертого измерения и дальше. Но нам не обязательно следовать за ними. Что касается интеллектуальных богатств и эстетического разнообразия, нам вполне достаточно трехмерного мира.
Глава десятая. Комедия красок
Полтораста лет назад один студент, раскрашивая карту Англии, заметил, что ему хватает всего четырех цветов, чтобы соседние графства, например, Кент и Саффолк, не получились одного цвета. Это подтолкнуло его к мысли, что четырех цветов хватит для любой карты – и настоящей, и придуманной. Он поделился этой досужей идеей с братом. Брат, в свою очередь, рассказал о ней одному выдающемуся математику, который, немного поэкспериментировав и проверив, правдоподобна ли эта гипотеза, попытался ее доказать – и не сумел.
В последующие десятилетия при попытке решить проблему четырех красок оказались в тупике и многие другие математики, а с ними и множество дилетантов, в том числе великий французский поэт, основатель американского прагматизма и по меньшей мере один епископ Лондонский. Формулировка этой задачи так проста, что ее поймет каждый ребенок, но при этом она соперничала с Великой теоремой Ферма за звание самой знаменитой головоломки в истории математики. Наконец, в 1976 году мир узнал, что загадка разгадана. Однако когда стало известно, как именно это было сделано, праздничное настроение сменилось огорчением, скептицизмом и откровенным недоверием. Оказалось, что проблема, считавшаяся задачей чистой математики, обернулась философским вопросом, точнее, даже двумя: во-первых о том как в научном сообществе положено подтверждать свои претензии на математические знания, а во-вторых о том, может ли машинный интеллект помочь нам усвоить априорные истины.