Но это был еще не конец. Кантор стал искать все более крупные бесконечности и обратился к пространствам высших размерностей. Ведь на двумерной плоскости, рассудил он, точек наверняка больше, чем на одномерной линии. Года два он пытался доказать, что точки на плоскости нельзя однозначно сопоставить с точками на линии – и все это увенчалось тем, что в 1878 году он обнаружил, что на самом деле такое соответствие возможно. Простой трюк показал, что на отрезке длиной в дюйм точек ровно столько же, сколько во всем пространстве. «Я это вижу, но не верю своим глазам!» – писал Кантор коллеге.
После открытия, что ни размер, ни размерность не делают бесконечность больше, поиски забуксовали. Но через десять лет упорного труда (с перерывом на лечение в санатории после нервного срыва) Кантор вывел новый фундаментальный принцип, который позволил ему продолжить восхождение: множеств
вещей всегда больше, чем самих вещей. В конечном мире это довольно очевидно. Если у вас, скажем, три предмета, из них можно составить восемь разных множеств (в том числе, естественно, пустое). Гениальность Кантора состояла в том, что он обобщил этот принцип на царство бесконечного.Чтобы все стало чуть менее абстрактным, давайте представим себе, будто мы живем в мире, где бесконечно много людей. Теперь рассмотрим все возможные клубы (множества людей), которые могут существовать в таком мире. Самый неэксклюзивный
из этих клубов – универсальный клуб, в который входят абсолютно все до единого. Самый эксклюзивный – нулевой клуб, в котором нет ни одного члена. Между этими крайностями лежит бесконечное множество других клубов – в одних членов очень много, в других всего несколько. Насколько велика эта бесконечность? Есть ли способ однозначно сопоставить людей и клубы, показав тем самым, что два бесконечных набора на самом деле одного размера? Предположим, каждого человека можно сопоставить с одним и только одним клубом и наоборот. Одни люди окажутся членами клубов, с которыми сопоставлены (например, человек, сопоставленный с универсальным клубом). Другие по чистой случайности не будут членами клуба, с которыми ассоциированы (например, человек, сопоставленный с нулевым клубом). Эти люди войдут в клуб, который можно назвать «Граучо-клубом». Граучо-клуб – это своего рода общество изгоев: он состоит из людей, сопоставленных с клубами, в которые их не приняли. Поэтому человек, сопоставленный с нулевым клубом, в который он, естественно, не входит, может утешиться, что его приняли хотя бы в Граучо-клуб.Тут все принимает интересный оборот. Поскольку считается, что каждому человеку соответствует какой-то клуб и наоборот, должен быть кто-то, кто сопоставлен с самим Граучо-клубом. Назовем его Вуди. Он член Граучо-клуба или нет? Ну, предположим, да. Это значит, что по определению его надо исключить из клуба, с которым он сопоставлен. Следовательно, Вуди – не член Граучо-клуба. Но если он не член Граучо-клуба, значит, поскольку клуб, с которым он сопоставлен, его не принял, Вуди – член Граучо-клуба. С какой стороны ни посмотри, везде противоречие. Как мы зашли в этот тупик? Все из-за предположения, что людей можно однозначно сопоставить с клубами. Следовательно, это предположение ложно. Тем самым установлено, что бесконечность из множеств вещей больше, чем бесконечность самих вещей.
Красота этого принципа, который известен как теорема Кантора, состоит в том, что его можно применять много раз подряд. Если дано любое бесконечное множество, всегда можно создать бесконечность еще больше, рассмотрев его показательное множество – множество всех подмножеств, которые можно из него создать.
Кантор возвел поверх простого reductio ad absurdum
нескончаемую башню бесконечностей. Это было как сон, что-то вроде «Кубла-хана» Кольриджа. Но математики обнаружили в этой новой теории ресурсы, необходимые, чтобы подвести под свой предмет надежный фундамент. «Никто не изгонит нас из рая, который создал нам Кантор», – провозгласил великий (и влиятельный) математик Давид Гильберт. Однако некоторые математики отмели канторовскую бесконечность бесконечностей как «туман на тумане» и «математическое безумие». У Кантора сложилось впечатление, что эти критики преследуют его, что усугубило его нервное расстройство (судя по всему, у него был маниакально-депрессивный психоз). В промежутках между постоянными срывами и госпитализациями он размышлял над теологическими следствиями из бесконечного и с неменьшим пылом разрабатывал теорию, что шекспировские пьесы написал Бэкон.