Гейзенберг позже покажет, что эта некоммутативность приводит к
Абстракцию матричной механики сразу невзлюбило сообщество физиков-экспериментаторов с их склонностью к осязаемым наглядным объяснениям. Только после того как была создана волновая механика и показана ее эквивалентность матричной механике, объединенная квантово-механическая теория получила широкое признание.
Эйнштейн, сторонник концепции бога Спинозы, пришел в ужас от одного из поразительных следствий теории Гейзенберга: если координата и импульс не могут быть измерены одновременно и точно, то невозможно определить координаты и скорости всех объектов во Вселенной и предсказать их будущее. Подобное упущение не беспокоило Гейзенберга и Борна, которым было комфортно работать с вероятностной механикой вместо точной классической механики. Эйнштейн же яростно сражался против отказа от строгого детерминизма в пользу идеи случайного поведения частиц.
Подсчет фотонов
Любопытно, что Эйнштейн, один из основателей квантовой теории, оказался противником своего собственного творения. Тем не менее мы должны отличать оригинальную идею кванта, которая просто означала дискретную порцию энергии или другой физической величины, от полностью сформировавшейся квантовой механики, системы, которая на атомном масштабе заменяет детерминистическую классическую механику. К примеру, в описании фотоэффекта, предложенном Эйнштейном, электрон поглощает дискретное количество энергии в виде фотона, а затем использует полученное ускорение, чтобы оторваться от поверхности металла и далее двигаться в пространстве уже непрерывно (и детерминированно). Эйнштейн возражал против парадоксальной идеи о том, что электрон поглощает фотон, а затем мгновенно оказывается совершенно в другом месте. Кажущиеся дискретными случайные скачки должны иметь непрерывное, причинное объяснение в рамках более глубокой теории, полагал Эйнштейн.
Эйнштейн не видел никаких проблем со случайностью как с инструментом, но не как с фундаментальным принципом природы. Эйнштейн знал, что в статистической механике случайность необходима как способ описания совокупного поведения неисчислимого множества атомов, взаимодействующих друг с другом и с окружающей средой. Классическая механика точно описывала простые взаимодействия между парами объектов, но не справлялась с расчетом сложных систем с большим количеством компонентов. Вот где работает случай, верил Эйнштейн, — не как основополагающий закон, а скорее как способ представления хаотичных движений.
Последним крупным вкладом Эйнштейна в квантовую теорию, прежде чем он смениллагерь и превратился в самого известного из ее критиков, стала квантовая статистическая теория идеальных газов. Идеальный газ — это большое количество молекул, как правило, помещенных в некоторый сосуд, причем для простоты считается, что молекулы не взаимодействуют друг с другом. В классической статистической механике, разработанной Больцманом и другими физиками, предположение о том, что молекулы движутся случайным образом, приводит к простой зависимости между давлением, объемом и температурой, которую называют
Стимулом к последней работе Эйнштейна в квантовой области была выдающаяся статья, которую он получил от индийского физика Шотендроната Бозе. В своей работе Возе вывел формулу Планка для излучения черного тела из квантовых статистических принципов. Эйнштейн перевел статью на немецкий язык и опубликовал в августе 1924 года в престижном научном журнале