Читаем Иллюзия пользователя. Урезание сознания в размерах полностью

Мы никогда не сможем избежать необходимости в собственной силе суждений. Гедель доказал, что люди знают больше, чем они могут узнать оттуда, откуда получают знания. Способность понимания сути достигает гораздо большего, нежели любое логическое построение. Теорема Геделя является беспрецедентным вкладом в креативность человеческого мозга.

Но исторические обстоятельства сложились так, что открытие Геделя напоминало о заключениях предыдущей эпохи больше, чем знаменовало собой открытие новой.

Программа Гильберта была не более чем математическим выражением самонадеянности, которая влияла на философию науки на рубеже столетия. Позитивизм Конта осуждал любое знание, которое невозможно получить на основании опыта или логической дедукции. В Вене 20-х годов прошлого века эта философия была усовершенствована и отточена до направления, которое известно, как логический позитивизм. Круг философов и математиков отточили требования позитивизма до требования, что мы должны иметь возможность проверить знание, прежде чем принимать его на веру. Мы должны иметь возможность доказать, что оно верно.

Следствием этого усовершенствования стала смерть позитивизма. Выяснилось, что он противоречил с тем, как естественные науки использовали индукцию, при которой общее знание может быть получено из серии наблюдений. В конце концов никто никогда не знает, нарушит ли следующее явление, которое мы наблюдаем, закон, который только недавно стал известен.

Подобный крах позитивизма не вызвал удивления у Геделя, который посещал встречи в венском кругу: вся его математическая философия была вдохновлена Кантом, который подчёркивал, что мы не можем доказать все, что знаем, но должны принять: оно базируется на основаниях, которые не могут быть доказаны — априорных категориях.

Но Гедель был не просто оппонентом позитивизма. Он был платонистом. Его взгляды на математические числа были частично заимствованы от греческого философа, который вывел философию идей около 400 года до н. э. Идея Платона заключалась в том, что за воспринимаемой нами с помощью органов чувств реальностью лежит еще более реальная реальность, состоящая из фундаментальных принципов, идей, для которых реальность, которую мы воспринимаем, является не более чем подобием. Но эта реальность существует, осознаем мы это или нет.

Эта точка зрения существенно контрастировала с мнением большинства математиков в начале 20 века (но сегодня она получила гораздо более широкое распространение). Давид Гильберт полагал, что математика является своеобразной игрой, которая доказывает свою правильность через формальную последовательность. Бертран Рассел воспринимал математику просто как один из видов прикладной логики. Другие, к примеру, датчанин Лютцен Брауэр, полагали, что математические величины представляли собой усовершенствованную человеческую практику — то есть нашу интуицию.

Но Гедель полагал, что реальность этих величин не имеет ничего общего с тем, можем ли мы доказать их последовательность или то, что они могут быть доказаны логически или применены на практике. Целые числа или другие математические величины существовали «там» задолго до того, как мы осознали их существование.

Эти взгляды Гедель сохранял с середины 20-х годов и на протяжении 30-х годов, когда он получал глубокие результаты в математической логике — один за другим. Он полагал, что эти взгляды являются жизненно важными для его научных достижений. Однако он их не обсуждал. Он не публиковал свои философские воззрения, даже несмотря на то, что философия являлась одним из главных интересов его жизни. Только в 1944 году его взгляды получили широкую огласку — в юбилейном сборнике статей в честь Бертрана Рассела. Математик и философ Соломон Феферман говорил о его статье так: «Гильберт умер в 1943 году, за год до того, как появился Гедель».

«В процессе подготовки вступительной главы по Геделю для предстоящего полного издания его работ я был поражен огромным контрастом, — писал Феферман, главный редактор Собрания работ Геделя, — между глубокими платоновскими убеждениями, которые Гедель сохранял относительно объективных основ математики и особой осторожностью, которую он проявлял в раскрытии этих убеждений».

Можно задать вопрос, чего стоило ему это молчание. Гедель не делился с людьми источником своих озарений. Он напрямую не раскрывал своих верований о мире. Он говорил другим только то, что мог доказать.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже