Две публикации, появившиеся в конце 2015 года, изменили всю область иммунотерапии и выдвинули на первый план роль микробов в традиционных методах лечения рака, показав, что микробы могут влиять на результаты терапии. В первой статье доктор Томас Гаевски возглавил группу исследователей в Чикагском университете. Они задали довольно простой вопрос: изменит ли манипуляция с микробным составом эффективность иммунотерапии? Его команда искала ответ на этот вопрос на примере иммунотерапии, которая использует моноклональное антитело против PDL1 в качестве ингибитора контрольной точки. PDL1 ограничивает выработку специфических иммунных клеток (CD8 + T-клеток), которые активно ищут и уничтожают опухоли. Команда доктора Гаевского начала с изучения противоопухолевого эффекта у лабораторных мышей, которых разводили в двух разных клетках. Этих мышей специально населили различной кишечной микробиотой. Затем ученые имплантировали опухоли меланомы мышам. Они обнаружили различные реакции: опухоли у мышей одного выводка росли менее агрессивно, чем у представителей другого. Был обнаружен более сильный Т-клеточный ответ у мышей с более медленным ростом опухоли. Эти эксперименты показали, что разные микробиоты по-разному влияют на ответы Т-клеток и, что важно, влияют на скорость роста опухоли. Чтобы подтвердить этот результат, исследователи поселили мышей вместе, что позволило смешивать микробиоту из-за общего контакта и того факта, что мыши едят экскременты друг друга – самостоятельно проводят ТФМ! После обмена микробами у двух выводков мышей больше не было выявленных различий роста опухолей. Таким же образом, когда фекалии намеренно переносят от одной мыши к другой, с ними переносятся и противоопухолевые, и Т-клетки. При объединении фекального переноса и иммунотерапии у более восприимчивых животных наблюдался еще больший контроль за ростом опухоли. Это говорит о том, что микробиом может играть центральную роль в иммунотерапии рака.
Открытие вызвало еще один вопрос: какие конкретные микробы оказывают специальное воздействие на иммунотерапию? Секвенируя кишечную микробиоту, исследователи обнаружили, что Bifidobacterium были связаны с противоопухолевыми иммунными реакциями. Когда они добавили коктейль из этих микробов восприимчивым животным, получилось передать способность контролировать опухоли у чувствительных мышей в той же степени, какая была достигнута при трансплантации кала. Что действительно удивляло, так это то, когда ученые скармливали смесь Bifidobacterium мышам-мутантам, у которых не было CD8 + Т-клеток, они не могли контролировать опухоли. Это означало, что для контроля необходимы как CD8 + Т-клетки, так и эти микробы. Кроме того, если исследователи умерщвляли бактерии перед тем, как дать их мышам, эффекта не наблюдалось. Следовательно, для воздействия необходимы живые бактерии.
Второе исследование, проведенное доктором Лоуренсом Цитвогелем во Франции, предлагает дополнительные доказательства, но с участием других «игроков». Его команда использовала лабораторных мышей с различными саркомами, меланомами или колоректальными опухолями, чтобы исследовать эффект иммунотерапии другого ингибитора контрольной точки – анти-CTLA-4. Эта иммунотерапия одобрена для лечения пациентов с метастатической меланомой (рак кожи). Команда доктора Цитвогеля обнаружила, что ни стерильные животные, ни животные на антибиотиках не реагировали на терапию анти-CTLA-4, а мыши с нормальной микробиотой реагировали хорошо. Исследователи также обнаружили, что после добавления Bacteroides fragilis (B. Fragilis) стерильным животным и животным, получающим антибиотики, эффективность иммунотерапии восстанавливалась; этот эффект был опосредован Т-клетками. В другом эксперименте, в ходе которого изучались кишечные микробиомы 25 пациентов с раком кожи, исследователи обнаружили, что фекальный перенос на стерильных мышей от пациентов, которые содержали B. Fragilis, приводил к восстановлению у анти-CTLA-4 противоопухолевой активности.