Рассчитав корреляцию доходности акций с рыночным портфелем и дисперсию рыночного портфеля, можно рассчитать бета-коэффициент по формуле:
Расчет стандартного отклонения доходности по акциям Газпрома и МТС на полугодовом промежутке времени
Динамика индекса ММВБ и месячная доходность индекса в 2010 г.
Среднемесячная доходность рынка равна
Расчет классического бета-коэффициента показывает, что инвестирование в акции Газпрома будет практически таким же, как инвестирование в индекс ММВБ, так как коэффициент бета близок к единице. С позиции портфельного инвестора, акции МТС менее подвержены системному риску (бета-коэффициент меньше единицы). В рамках конструкции САРМ расчет требуемой доходности будет следующим:
Примечание.
Безрисковая ставка (средняя ставка по депозиту в 2010 г.) принимается на уровне 8 % годовых, и рыночная премия за риск составляет 6,3 % годовых в период с октября 2009 г. по сентябрь 2010 г.Однако, если посмотреть на месячные доходности акций Газпрома (%): (-6,06; -6,65; 9,05; -2,56; 0,78) и МТС: (-12,53; 1,58; 1,58; 3,51; 0,61), можно заметить, что акции Газпрома в трех случаях (—6,06 %; —6,65 %; —2,56 %) показали отрицательную доходность, один раз доходность чуть больше нуля (0,78 %) и один раз очень хорошую доходность (9,05 %). МТС, наоборот, в четырех случаях показал положительную доходность (1,58 %; 1,58 %; 3,51 %; 0,61 %) и в одном случае значительное падение доходности (—12,53 %). Можно предположить, что оценка акций с учетом одностороннего отклонения будет давать более точные данные при сопоставлении этих акций.
Расчет бета-коэффициента Хогана – Варрена показан в табл. 9.13, Харлоу – Рао – в табл. 9.14, Эстрада – в табл. 9.15, сводные результаты – в табл. 9.16. Значение безрисковой ставки принято равным 0,67 % (8 % годовых по депозиту/12 мес.) в месяц.
Расчет бета-коэффициента Хогана – Варрена для двух рассматриваемых акций
Расчет меры риска и требуемой доходности по модели Харлоу – Рао
Модель Эстрады для расчета мер систематического риска и требуемой доходности
Сопоставительный анализ расчетных мер риска
Как видно из табл. 9.16, результаты, полученные по односторонним мерам риска, отличаются от первоначальных расчетов в рамках классической конструкции САРМ. В рамках двустороннего риска акции МТС характеризуются меньшим риском по сравнению с рынком и акциями Газпрома, однако анализ одностороннего риска показывает, что акции более рискованны и требуемая доходность по ним должна быть выше.
9.4. Тестирование мер риска в рамках конструкции САРМ для объяснения различий в доходности страновых индексов и отдельных портфелей (акций)
В работе С. Хванга и К.С. Педерсена [Hwang, Pedersen, 2002] представлены результаты тестирования трех моделей на основе конструкции САРМ на уровне страновых индексов: с традиционным бета-коэффициентом и с двумя мерами одностороннего риска – LPM-CAPM