Читаем Интернет-журнал "Домашняя лаборатория", 2008 №3 полностью

Дальнейший рост концентрации хирального селектора может резко ограничить подвижность анализируемых веществ, так что они; Детектируются очень близко к ЭОП. В этом случае из-за слишком малой зоны движения разделение энантиомеров может стать невозможным. Кроме того, при повышении концентрации ЦД растет вязкость буфера, что замедляет ЭОП и увеличивает время анализов. В капиллярах с заторможенным ЭОП рост концентрации ЦД также приводит к уменьшению подвижности анализируемых веществ, повышению вязкости буферной системы и, вследствие этого, к увеличению времени анализов.

Наряду с уменьшением разрешения вследствие небольшого времени пребывания в капилляре при высоких концентрациях ЦД могут наблюдаться также и другие эффекты. В некоторых случаях оказывается, что уже при очень низких концентрациях ЦД наблюдается хорошее разделение пар энантиомеров (разрешение больше 1.5). Однако, при более высоких концентрациях хирального селектора (об. 4-10 %) разрешение снова падает. При более высоких концентрациях ЦД время пребывания D- и L-форм анализируемых веществ в ЦД увеличивается, однако разность этих времен постоянно уменьшается.

Тем самым, разрешение пиков при разделении в этой системе уменьшается или даже совершенно исчезает. Экстремальный случай оптимизации концентрации ЦД приведен на рис. 87.



Рис. 87.Изменение последовательности выхода энантиомеров при различных концентрациях ЦД.

Условия разделения (слева): L=50/57 см, Е=350 В/см, 20 мМ фосфатный буфер, pH 7.7 с об. 0.5 % гидроксипропил-fr-ЦД. (Справа): L=80/87cm, Е=30 В/см, 20 мМ фосфатный буфер, pH 7.0 с об. 15 % гидроксипропил-Р-ЦД; детектирование при 214 нм.


При очень низких концентрациях хирального селектора в системе достигается хорошая селективность. Если повысить концентрацию, разрешение полностью исчезает и снова появляется при очень высоких концентрациях ЦД. Это показано на рис. 88, где представлены зависимости относительных времен миграции от концентрации ЦД.



Рис. 88.Зависимость относительных времен миграции D- и L-дансил-фенилаланина от концентрации гидроксипропил — Р-ЦД.


Хорошо видно, что относительная миграция с ростом концентрации ЦД резко падает и примерно при об. 6 % достигает минимума. В этой области разрешение зависит только от различия времен нахождения D- и L-форм в ЦД. При концентрациях больше об. 6 % подвижность анализируемых веществ практически не изменяется. Следует отметить, что разрешение снова возрастает при концентрациях ЦД больше об. 12 %. Это можно объяснить только тем, что при высоких концентрациях образуются диастереомерные комплексы между ЦД и анализируемым веществом. Диастереомеры по своей природе проявляют различные физические свойства, и поэтому их можно разделить. Из-за различия механизмов разделения в начале и конце кривых последовательность выхода энантиомеров неизбежно обращается.


11.6. Оптимизация значений pH

Значение pH в КЭ является одним из важнейших параметров оптимизации. С помощью значений pH можно не только воздействовать на ЭОП, но и перевести анализируемые вещества в определенную ионную форму. Из этого вытекают различные электрофоретические подвижности, которые приводят затем к разделению анализируемых веществ. Если используются незаряженные ЦД, пара энантиомеров при определенном pH должна иметь такую собственную подвижность, чтобы смогла пройти сквозь псевдостационарную фазу (в данном случае — ЦД).

На рис. 89 в качестве примера представлена зависимость разделения рацемированной смеси от значения pH. При низких значениях pH анализируемые вещества практически не обладают собственной подвижностью и проходят через детектор со скоростями, близкими к ЭОП, не разделяясь. Из рис. 89 также видно, что при низких значениях pH ЭОП очень мал.



Рис. 89.Влияние значений pH на разделение производных дигидропиридииа.

Условия разделения: L=50/57cm, Е=440 В/см, буфер: 20 мМ фосфат, об. 0.4 % гидроксипропил-р-ЦД, различные значения pH; детектирование при 214 нм.


Перейти на страницу:

Похожие книги