В бестселлере «Капитал в XXI веке» Томас Пикетти[171]
подчеркнул, что за минувшие десятилетия доля труда в национальном доходе (США и других стран) уменьшилась в пользу доли капитала. Эта тенденция настораживает, так как влечет за собой повышение неравенства. Главный вопрос в том, сгладит ее ИИ или усугубит. Если он станет новой, эффективной формой капитала, то доля капитала в экономике, вероятно, продолжит расти за счет труда.Для такой проблемы простых решений не существует. К примеру, предложенный Биллом Гейтсом налог на роботов снизит неравенство, но будет уже не так выгодно покупать их. Поэтому компании станут меньше инвестировать в роботов, производительность замедлится, и в итоге мы все равно обеднеем.
Стратегический компромисс очевиден: у нас есть политика урегулирования неравенства, но за счет вероятного снижения общего дохода.
Еще одна тенденция, ведущая к неравенству, – смещение технического прогресса в пользу квалифицированного труда. Оно несоразмерно повышает заработок высокообразованных людей и может снизить зарплату малообразованных. Появление компьютеров и интернета стало основной причиной различий в оплате труда в США и Европе за последние 40 лет. Как сформулировали экономисты Клаудиа Голдин и Лоуренс Кац, «образованные люди с развитыми врожденными способностями быстрее осваивают новые сложные инструменты»[172]
. Нет смысла надеяться, что с ИИ все получится иначе: человеку с хорошим образованием проще приобрести новые навыки. И если необходимые для работы с ИИ навыки станут часто меняться, образованные люди получат колоссальные преимущества.Дополнительные знания для успешного применения ИИ понадобятся по многим причинам. Например, разработчику функции вознаграждения необходимо одновременно знать цели организации и способности машин. Они эффективно масштабируются, и, если это дефицитный навык, лучшие разработчики извлекут прибыль из миллионов или миллиардов машин.
Именно потому, что сейчас связанные с ИИ навыки достаточно редки, процесс обучения людей и компаний будет дорогостоящим. В 2017 году более тысячи из семи тысяч студентов Стэнфордского университета поступили на вводный курс машинного обучения, такая же тенденция прослеживается практически везде. Но выпускники Стэнфорда и других подобных учебных заведений – лишь небольшая часть рабочей силы. Основная доля современных специалистов обучалась десятки лет назад и, следовательно, нуждается в переподготовке и повышении квалификации. Наша производственная система обучения для этого не годится. Компаниям не стоит надеяться, что система изменится достаточно быстро и обеспечит всех работниками для успешной конкуренции в эпоху ИИ. Изменить политику не так просто: улучшение образования обходится дорого и кто-то должен за него заплатить – значит, либо повысят налоги, либо компании или студенты станут оплачивать обучение. Даже если такие расходы покрыть несложно, не все люди среднего возраста захотят вернуться к обучению. Больше всего от смещения технического прогресса в пользу квалифицированного труда пострадают те, кто не готов к непрерывному образованию.
Отойдет ли весь контроль нескольким гигантским компаниям?
Развитием ИИ обеспокоены не только частные лица. Многие компании опасаются отстать от конкурентов в безопасности и использовании ИИ, отчасти из-за связанной с ним экономии за счет роста масштабов производства. Больше клиентов, следовательно, больше данных, что повышает точность прогнозов, а это, в свою очередь, привлекает еще больше клиентов, – и так по кругу. При определенном стечении обстоятельств прорыв в производительности ИИ конкурентам уже не нагнать. В нашем мысленном эксперименте с прогнозированием покупок Amazon (см. главу 2
) масштаб и преимущество первого хода с большой вероятностью приводят к такой прогностической точности, что конкуренты навсегда остаются далеко позади.Не впервые новые технологии создают возможность развития для крупных компаний. AT&T более 50 лет контролировала телекоммуникации в США, в 1990-х и 2000-х Microsoft и Intel были монополистами в области IT. Не так давно Google опередила все поисковики, а Facebook – социальные сети. Эти компании сильно разрослись, поскольку их основные технологии позволили им снизить издержки и повысить качество. В то же время у них появились конкуренты, несмотря на экономию за счет роста: Apple и Google у Microsoft, AMD и ARM – у Intel и множество компаний у AT&T. Технологические монополисты сменяют друг друга из-за процесса, который Йозеф Шумпетер[173]
назвал «бурей созидательного разрушения».Что касается ИИ, экономия за счет масштаба благоволит к расширению деятельности. Но это не значит, что доминировать станет одна компания и (даже если такое произойдет) продержится на рынке долго. Для мирового масштаба это еще актуальнее.