Реконструкция Скиапарелли была принята большинством историков науки, в том числе Дюэмом, Хитом, Дрейером[202]
. Действительно, она представляет собой оптимальный вариант, при котором система из трех гомоцентрических сфер наилучшим образом описывает видимые движения Луны. Но соответствует ли эта реконструкция модели самого Эвдокса? Некоторые авторы, например Дикс, высказывали по этому поводу серьезные сомнения[203]. Дело не только в том, что, приняв реконструкцию Скиапарелли, необходимо будет признать, что Симпликий (и Сосиген, а может быть, и Эвдем) допустил грубую ошибку в изложении теории Эвдокса. В этой же ошибке придется заподозрить и Аристотеля, который в «Метафизике» называет вторую сферу, совершающую движение по эклиптике, «общей для всех» (κοινήν άπασων εΐναι)[204].Вряд ли выражение «общая для всех (светил)» можно понимать иначе, чем в том смысле, что она для всех светил движется в том же направлении (ведь время обращения второй сферы в каждом случае различно). А ведь Аристотель, принявший непосредственное участие в развитии теории гомоцентрических сфер, несомненно, тщательно изучил соответствующее сочинение Эвдокса. Не правильнее ли будет допустить, что в эпоху Эвдокса многие детали движения Луны (в том числе регрессия лунных узлов) были еще очень плохо известны? Не имея текстов самого Эвдокса (или на худой конец Эвдема), мы не можем дать окончательный ответ на все эти вопросы.
Движение Солнца Эвдокс также описывал с помощью трех сфер. Внешняя сфера, как и в случае Луны, дублирует суточное движение небесной сферы. Следующая за ней вторая сфера воспроизводит движение Солнца по эклиптике с запада на восток; период вращения этой сферы вокруг своей оси равен, очевидно, одному солнечному году. Недоумение вызывает третья сфера: из разъяснений Симпликия следует, что она должна объяснить отклонения Солнца от эклиптики к северу или к югу и в этом смысле аналогична третьей лунной сфере. По-видимому, Эвдокс ошибочно полагал, что раз Луна и планеты отклоняются от эклиптики, то такие же отклонения должны иметь место и для Солнца. Симпликий указывает, что третья сфера необходима для объяснения того, что «Солнце в дни летних и зимних солнцестояний не всегда восходит в одной и той же точке». Это совершенно ошибочное наблюдение, имевшее своей причиной, по-видимому, несовершенство тогдашней измерительной техники. По поводу третьей сферы сообщается также, что ее ось составляет с осью второй сферы значительно меньший угол, чем это имеет место для второй и третьей лунных сфер, и что она вращается в том же направлении, что и вторая сфера, но только значительно медленнее.
Следует отметить, что, хотя астрономы вскоре осознали ошибочность позиции Эвдокса в вопросе об отклонении Солнца от эклиптики, некоторые позднейшие авторы, в том числе Плиний и Александр Афродисийский, продолжали верить в то, что такое отклонение существует, а Теон Смирнский даже указал его величину (около 0,5°)[205]
. Любопытно, что, вводя третью сферу Солнца для объяснения этого мнимого явления, Эвдокс в то же время игнорирует хорошо известный со времен Эвктемона факт неравенства времен года (объясняющийся, как мы теперь знаем, неравномерностью движения Земли по эллиптической орбите). В модели Эвдокса четыре времени года имеют одинаковую длительность.Реконструируя теорию Эвдокса, Скиапарелли пришел к выводу, что и в случае Солнца Симпликий допустил ошибку, перепутав вторую и третью сферы, и что, следовательно, периоды вращения этих сфер и направления их движения должны быть взаимно переставлены. В противном случае, аргументировал Скиапарелли, Солнце слишком долго будет находиться к северу от эклиптики и слишком долго к югу от нее, что противоречит наблюдениям. Этот аргумент, однако, не выдерживает никакой критики; любое утверждение, что Солнце может отклониться от эклиптики в ту или другую сторону, противоречит наблюдениям. Дело было, по-видимому, не в этом, а в том, что Скиапарелли ощущал потребность (и вполне справедливо) в установлении аналогичной последовательности как лунных, так и солнечных сфер.