Из этих источников мы узнаем, что усовершенствованная модель Каллиппа отличалась от модели Эвдокса добавлением нескольких дополнительных сфер. В отношении Сатурна и Юпитера Каллипп не счел нужным менять что-либо в теории Эвдокса: как мы видели выше, движение каждой из этих планет достаточно хорошо описывалось четырьмя сферами. Для Марса, Венеры и Меркурия Каллипп добавил по одной сфере, кроме того, он присовокупил две дополнительные сферы для Луны и столько же для Солнца. Таким образом, общее число сфер у Каллиппа (вместе со сферой неподвижных звезд) стало равным тридцати четырем.
К сожалению, мы очень плохо информированы о функциях дополнительных сфер Каллиппа. В качестве единственного мотива для введения этих сфер Симпликий указывает на неодинаковую длительность времен года, установленную уже Эвктемоном. Но это может относиться только к сферам Солнца. Из найденного в Египте папируса, относящегося ориентировочно к III–II вв. до н. э. и содержащего популярный астрономический текст некоего Лептина[211]
, мы узнаем, что длительности времен года (начиная с летнего солнцестояния) принимались Каллиппом равными 92, 89, 90 и 94 дням, что, во всяком случае, представляло собой значительное улучшение по сравнению с цифрами Эвктемона. Две дополнительные сферы для Солнца нужны были Каллиппу, очевидно, для объяснения этого факта. Можно предположить, что эти сферы работали у Каллиппа примерно так же, как третья и четвертая планетные сферы в исходной модели Эвдокса, т. е. они давали некую вырожденную гиппопеду, уже не имевшую формы восьмерки, но выражавшуюся в замедлении движения Солнца в одних местах орбиты и в его ускорении в других. Действительно, при надлежащем выборе четвертой и пятой солнечных сфер можно было достичь достаточно точного воспроизведения движения Солнца по эклиптике.По аналогии можно предположить, что четвертая и пятая сферы в системе сфер Луны потребовались Каллиппу для того, чтобы учесть неравномерность движения Луны вдоль эклиптики (заметим, что эта неравномерность выражена у Луны гораздо более отчетливо, чем у Солнца). К сожалению, мы не знаем, остались ли неизменными в модели Каллиппа функции второй и третьей лунных сфер Эвдокса. Выше было сказано о тех неясностях, которые имеются в этом вопросе, и об «ошибке», допущенной, по мнению Скиапарелли, Симпликием (или Сосигеном) в изложении теории Эвдокса. В течение тридцати лет, отделявших Эвдокса от Каллиппа, в изучении движения Луны был несомненно достигнут существенный прогресс, однако, в какой мере этот прогресс отразился на развитии теории гомоцентрических сфер, мы сказать не можем.
Неясна также роль пятой сферы в системе сфер Марса, Венеры и Меркурия. О том, что для Марса и Венеры исходная теория Эвдокса оказалась несостоятельной, мы уже говорили. Скиапарелли показал, каким образом можно было бы выбрать пятую сферу так, чтобы для этих планет получались попятные движения, соответствующие их синодическим периодам. Разумеется, реконструкцию Скиапарелли нужно рассматривать только лишь как гипотезу: она говорит не о том, какой была модель Каллиппа, а о том, какой она могла бы быть.
Следующим этапом в развитии теории гомоцентрических сфер была модель, предложенная Аристотелем[212]
. Здесь, однако, надо отметить существенное различие в подходе к решению проблемы Эвдокса и Каллиппа, с одной стороны, и Аристотеля — с другой. Первые два поступали как математики: они решали задачу о представлении видимого движения небесных тел в виде суммы круговых движений, т. е. вращений нескольких гомоцентрических сфер, не задаваясь вопросом о том, обладают ли эти сферы сами по себе какой-либо физической реальностью. С этим была связана и вторая особенность этих теорий: для каждого небесного тела указанная задача решалась Эвдоксом и Каллиппом независимо от движения прочих тел; это приводило к тому, что система сфер данного тела была замкнутой в себе системой, не влиявшей на движения других систем и не зависевшей от них. В отличие от этого у Аристотеля совокупность гомоцентрических сфер образовывала единый физический космос, причем каждая сфера была вполне реальным предметом, состоявшим из реального, хотя и особого вещества (эфира) и взаимодействовавшим с примыкавшими к ней сферами. Это взаимодействие передавалось последовательно от внешней сферы неподвижных звезд через все промежуточные сферы вплоть до самой внутренней, к которой была прикреплена Луна. Осуществлялось оно таким образом: каждая сфера увлекала в своем движении непосредственно следующую за ней внутреннюю сферу, в свою очередь будучи увлекаема движением непосредственно предшествовавшей ей внешней сферы.