При моделировании движения планет Эвдокс столкнулся с новыми трудностями. Двигаясь вдоль пояса зодиака, планеты не только отклоняются к северу или к югу от эклиптики, но, кроме того, описывают на небе своеобразные петли, обусловленные, как мы. знаем, движением Земли по се орбите, на которое накладывается движение соответствующей планеты. В наиболее типичных случаях имеет место следующая картина: в течение какого-то времени планета движется вдоль эклиптики с запада па восток (прямое движение), потом это движение замедляется и некоторое время планета кажется стоящей на месте. Вслед за этим планета начинает двигаться в другую сторону — с востока на запад (попятное движение), после чего наступает новая остановка, а затем планета снова возобновляет прямое движение. В результате планета как бы колеблется около некоторой воображаемой точки, именуемой в астрономии средним положением планеты. Эта средняя точка перемещается с запада на восток более или менее равномерно; время, за которое она обойдет весь круг зодиака и вернется в исходное положение, называется сидерическим периодом планеты. Укажем также, что время, требуемое планете для прохождения одной петли вокруг ее средней точки и определяемое промежутком между двумя последовательными соединениями (или противостояниями) планеты с Солнцем, называется синодическим периодом планеты.
Движение каждой планеты Эвдокс смоделировал с помощью четырех гомоцентрических сфер. Внешняя сфера, как и в других случаях, ответственна за суточное обращение планеты вокруг Земли вместе со всем небесным сводом. Вторая сфера воспроизводит движение среднего положения планеты вдоль пояса зодиака. Если бы мы ограничились только этими двумя сферами, все планеты двигались бы в плоскости эклиптики с запада на восток. Эвдоксу надлежало выбрать третью и четвертую сферы так; чтобы сумма их вращений приводила к петлеобразному движению планеты вокруг ее среднего положения. Он сделал это с помощью гениально простого построения, причем реконструкция его теории в этом важном пункте представляет собой бесспорную заслугу Скиапарелли.
Третья сфера была расположена Эвдоксом таким образом, что ее полюса находились в двух противоположных точках эклиптики (т. е. на экваторе второй сферы). Ее собственное движение состояло во вращении вокруг своей оси с периодом, равным синодическому периоду данной планеты (т. е. промежутку времени между двумя последовательными противостояниями или соединениями этой планеты с Солнцем). Полюса третьей сферы были различны для различных планет, но у Меркурия и Венеры они совпадали. Направления вращения третьей сферы Симпликий не указал, но в данном случае это не имело существенного значения.
Полюса четвертой сферы прикреплены к поверхности третьей сферы таким образом, что ось четвертой сферы составляет постоянный угол с осью третьей сферы. Четвертая сфера вращается вокруг своей оси с периодом, равным периоду третьей сферы, но в противоположном направлении. К экватору четвертой сферы прикреплена планета, движение которой слагается, таким образом, из суммы равномерных вращений четырех сфер.
Если отвлечься от движения первой и второй сфер, т. е. считать среднее положение планеты неподвижным, то тогда окажется, что сумма вращений третьей и четвертой сфер дает траекторию, имеющую форму замкнутой симметричной кривой, похожей на восьмерку (рис. 1). Одной из осей симметрии этой восьмерки будет эклиптика, а точка соединения обеих ее частей окажется совпадающей со средним положением планеты. Эту кривую Эвдокс назвал гиппопедой (ίππου πέδη — лошадиные путы); в математике нового времени она получила наименование лемнискаты. Движение планеты взад и вперед по гиппопеде совместно с перемещением всей этой кривой вдоль эклиптики (вследствие вращения второй сферы) должно было, по замыслу Эвдокса, отобразить видимое движение данной планеты по небесному своду.
Рис. 1. «Гиппопеда» Эвдокса
В какой мере это отображение можно считать адекватным? На этот вопрос нельзя ответить однозначно, не рассматривая движение каждой планеты в отдельности. А для этого надо знать, во-первых, значения синодических периодов планет, которыми пользовался Эвдокс, а во-вторых, углы, образуемые между собой осями третьей и четвертой сфер. Значения синодических (а также сидерических) периодов, принимавшиеся Эвдоксом, известны нам благодаря Симпликию. Они были известны Эвдоксу достаточно хорошо для всех планет, за исключением Марса, для которого значение Эвдокса оказывается заниженным почти в три раза[206]
.К сожалению, никаких данных об углах, образуемых осями третьей и четвертой сфер, Симпликий не сообщает.