При этом, однако, возникала следующая трудность. Если все небесные сферы жестким образом взаимосвязаны, причем каждая сфера передает свое движение непосредственно за ней следующей сфере, тогда необходимо будет принять, что внутренняя сфера каждой данной планеты, например Сатурна, передает свое движение, представляющее собой сумму движений всех четырех сфер Сатурна, первой (внешней) сфере следующей планеты, т. е. в данном случае Юпитера. Таким образом, получается, что любая планета, помимо своих собственных движений, повторяет движения всех внешних по отношению к ней планет.
Это же относится и к движениям Солнца и Луны. Разумеется, ничего похожего в действительности не наблюдается. У всех светил имеется лишь одно общее движение, совпадающее с суточным движением небесного свода в целом; все же остальные движения у них происходят независимо от движений прочих светил.
Чтобы устранить эту трудность, Аристотель предположил, что между последней сферой данной планеты (причисляя, для краткости, к планетам также Солнце и Луну) и первой сферой непосредственно за ней следующей планеты имеется несколько сфер, из которых каждая движется в противоположном направлении по отношению к соответствующей сфере данной планеты, как бы нейтрализуя ее движение. Число этих «нейтрализующих» (άνελίττουσαι) сфер оказывается на единицу меньше общего числа сфер данной планеты (ведь движение первой сферы, совпадающее с движением сферы неподвижных звезд, не должно нейтрализоваться). Таким образом, если в модели Каллиппа мы имели по четыре сферы для Сатурна и Юпитера, to в модели Аристотеля к ним нужно прибавить по три нейтрализующих сферы. Для всех прочих планет (за исключением Луны) нужно будет прибавлять по четыре нейтрализующих сферы. У Луны нейтрализующих сфер вообще нет: поскольку Луна последнее по порядку небесное тело, ближе всех находящееся к Земле, она уже никому не может передать своего движения. Общее число нейтрализующих сфер в модели Аристотеля равно, таким образом, 3 x 2+ 4 x 4 = 22. Прибавляя это число к числу сфер в модели Каллиппа, мы получим всего 56 сфер, а если не считать сферу неподвижных звезд — 55.
Изложение своей теории гомоцентрических сфер Аристотель завершает следующей странной фразой: «А если для Луны и для Солнца не прибавлять тех движений, которые мл указали, тогда всех сфер будет сорок семь» (εί δέ τη οβλήνη τε καί τώ ήλίω μη προστιϑείη τι
Эта фраза приводила в недоумение еще древних авторов. В частности, Сосиген предположил, что в текст вкралась опечатка и вместо επτά надо читать εννέα, а под сферами, которые можно не прибавлять, Аристотель имел в виду по две сферы для Луны и Солнца, введенные Каллиппом, плюс две нейтрализующие сферы для Солнца, оказавшиеся в этом случае излишними[214]
. Предположение Сосигена позволяет свести концы с концами; остается только неясным, почему Аристотель считал возможным отказаться от дополнительных сфер Каллиппа для Луны и Солнца, которые, по-видимому, были действительно нужны для объяснения некоторых особенностей движения этих светил (вполне излишней можно было счесть разве только третью эвдоксову сферу для Солнца, воспроизводившую несуществующие отклонения Солнца от эклиптики, но у Аристотеля речь идет явно не о ней). Надо, впрочем, признать, что интерпретации приведенной фразы, предлагавшиеся исследователями нашего времени, оказывались, как правило, еще менее убедительными. Нельзя также считать исключенным, что дело не ограничивается заменой одного слова и что весь текст этого места дошел до нас в сильно искаженном виде.Между тем Аристотель действительно мог сократить число своих сфер на семь единиц. Ведь у каждой планеты имеется внешняя, первая сфера, движение которой абсолютно тождественно движению сферы неподвижных звезд. В моделях Эвдокса и Каллиппа эта первая сфера действительно была необходима: ведь там движение каждой планеты считалось не зависящим от движения других светил и рассматривалось отдельно. У Аристотеля же все сферы взаимосвязаны и суточное движение сферы неподвижных звезд, у которой нет нейтрализующей ее сферы, передается последовательно всем семи светилам. В этом случае общее число сфер (вместе со сферой неподвижных звезд) оказывается, действительно, равным сорока девяти.