Читаем История науки полностью

Но насколько однозначно второе объяснение? Может быть, личинки в закрытой банке не появились потому, что им там было нечего дышать. Для того, чтобы исключить эту возможность, нужно провести ещё один контрольный эксперимент, обеспечив в банку доступ воздуха, но закрыв её для мух. Для этого нужно просверлить в крышки маленькие дырочки, через которые может проникать воздух, но не могут проникать мухи. А для того, чтобы исключить откладку яиц через дырочки, банку следует положить на бок.

Если на мясе в открытой банке появились личинки, а на мясе в закрытой банке, куда, тем не менее, проходит воздух, личинки не появились, то можно смело сделать вывод о том, что личинки мух в мясе развиваются из отложенных туда яиц.


Рассмотрим теперь некоторые конкретные научные эксперименты, из которых можно сделать далеко идущие выводы.

До работ Галилео Галилея (1564–1642) считалось, что тяжелые тела падают на Землю быстрее, чем легкие. Этот вывод, казалось бы, следует из наблюдений за падением гирьки и листка бумаги. Гирька падает быстро, а листок медленно плывет по воздуху. Но в весе ли здесь дело? Тем более, что легко показать, что гирьки любого веса падают с одинаковой высоты за одинаковое время.

Для того, чтобы проверить это экспериментально, скрутим листок бумаги в бумажный шарик. Его вес не изменился, но падать шарик будет так же быстро, как и гирька. Стало быть, дело не в весе, а в том, что изменилось при скручивании листочка. То есть, с площадью его поверхности. Можно сделать вывод, что на тело, имеющее большую площадь, действует какая-то сила, направленная в противоположную сторону, которая замедляет падение. Такой силой является сопротивление воздуха.

Попробуем теперь определить зависимость время падения от высоты, с которой падает гирька. Для этого нам понадобится какое-то устройство, измеряющее длину, и какое-то устройство, измеряющее короткие промежутки времени (предположим для простоты, что в нашем распоряжении имеется секундомер, которого во времена Ньютона не существовало).

Оказывается, что время падения будет пропорционально не высоте, а корню квадратному из неё. Эту зависимость можно описать формулой h = (a/2)*t2, где h и t – это высота и время, а (g/2) – коэффициент пропорциональности. Уже из той формулы видно, что скорость падающего тела непостоянна и вначале тело падает медленно, а затем все быстрее и быстрее.

А теперь вычислим мгновенную скорость падающей гирьки через t1 после начала падения. За это время тело пройдет расстояние h1, равное (a/2)*t12. А мгновенная скорость по определению – это производная пути от времени, которая будет равна a*t1. Иными словами, скорость падения будет пропорциональна времени, прошедшему с начала падения. А скорость изменения скорости (её называют ускорением) будет равной постоянной величине а.

Если предположить, что сила, действующая на падающее тело, во время падения остается одной и той же, то мы придем к выводу, что от величины силы зависит не скорость (как считали до Галилея), а ускорение.

Как же зависит ускорение от силы, действующие на падающее тело? Силу, которая действует на падающее тело, называют весом. Эту силу можно определить, взвесив тело на весах. Для легкой и тяжелой гирьки она разная. И получается, что ускорение не зависит от силы.

Но возможно и другое объяснение: ускорение пропорционально весу тела, но и вес тела и коэффициент пропорциональности между весом и ускорением одинаково зависят от функции какого-то внутреннего параметра тела. Эту функцию И. Ньютон назвал МАССОЙ и обозначил буквой m. И тогда получились зависимости Р = m*g, P = m*a, где g – константа. Отсюда следует, что а = g при любой массе и весе.

Как сделать выбор между двумя объяснениями, учитывая, что измерять массу мы не можем, а можем измерять только вес.

Идея опыта заключается в том, чтобы тело с одной массой тянуло вниз тело с другой массой. Это можно сделать, связав две гирьки весом P1 и P2 ниткой и перекинуть нитку через угол стола так, что первая гирька останется на столе, а вторая будет свисать вниз. При этом на первую гирьку будет действовать сила натяжения нити Q, а на вторую – сила P2 – Q. Вес первой гирьки, направленный перпендикулярно направлению её движения, будет уравновешиваться силой деформации стола и не окажет влияние на движение.

Если ускорение не зависит от действующей силы, то ускорение падающих гирек не будет зависеть от соотношения их весов. А во втором случае будут выполняться соотношения Q = m1*a, P2 – Q = m2*a, P1 = m1*g и P2 = m2*g, из которого следует, что a = g*P2/(P1 + P2).

Эксперимент подтверждает правильность второго объяснения. Ускорение пропорционально величине действующей силы, но ускорение свободно падающего тела не зависит от его веса, поскольку вес растет пропорционально массе.

Перейти на страницу:

Похожие книги

Мозг и его потребности. От питания до признания
Мозг и его потребности. От питания до признания

Написать книгу, посвященную нейробиологии поведения, профессора Дубынина побудил успех его курса лекций «Мозг и потребности».Биологические потребности – основа основ нашей психической деятельности. Постоянно сменяя друг друга, они подталкивают человека совершать те или иные поступки, ставить цели и достигать их. Мотиваторы как сиюминутных, так и долгосрочных планов каждого из нас, биологические потребности движут экономику, науку, искусство и в конечном счете историю.Раскрывая темы книги: голод и любопытство, страх и агрессия, любовь и забота о потомстве, стремление лидировать, свобода, радость движений, – автор ставит своей целью приблизить читателя к пониманию собственного мозга и организма, рассказывает, как стать умелым пользователем заложенных в нас природой механизмов и программ нервной системы, чтобы проявить и реализовать личную одаренность.Вы узнаете:• Про витальные, зоосоциальные и потребности саморазвития человека.• Что новая информация для нашего мозга – это отдельный источник положительных эмоций.• Как маркетологи, политики и религиозные деятели манипулируют нами с помощью страха. Поймете, как расшифровывать такие подсознательные воздействия.

Вячеслав Альбертович Дубынин , Вячеслав Дубынин

Научная литература / Научно-популярная литература / Образование и наука
Мозг: прошлое и будущее. Что делает нас теми, кто мы есть
Мозг: прошлое и будущее. Что делает нас теми, кто мы есть

Wall Street Journal назвал эту книгу одной из пяти научных работ, обязательных к прочтению. Ученые, преподаватели, исследователи и читатели говорят о ней как о революционной, переворачивающей представления о мозге. В нашей культуре принято относиться к мозгу как к главному органу, который формирует нашу личность, отвечает за успехи и неудачи, за все, что мы делаем, и все, что с нами происходит. Мы приравниваем мозг к компьютеру, считая его «главным» в нашей жизни. Нейрофизиолог и биоинженер Алан Джасанов предлагает новый взгляд на роль мозга и рассказывает о том, какие именно факторы окружающей среды и процессы человеческого тела формируют личность и делают нас теми, кто мы есть.

Алан Джасанов

Обществознание, социология / Научно-популярная литература / Образование и наука
Элементы: замечательный сон профессора Менделеева
Элементы: замечательный сон профессора Менделеева

Какой химический элемент назван в честь гоблинов? Сколько раз был «открыт» технеций? Что такое «трансфермиевые войны»? Почему когда-то даже ученые мужи путали марганец с магнием и свинец с молибденом? Что будет, если съесть половину микрограмма теллура? Есть ли в наших квартирах и офисах источники радиации? Ответы на эти и другие вопросы можно найти в новой книге Аркадия Курамшина «Элементы: замечательный сон профессора Менделеева». Истории открытия, появления названия, самые интересные свойства и самые неожиданные области применения ста восемнадцати кирпичиков мироздания – от водорода, ключевого элемента нашей Вселенной, до сверхтяжёлых элементов, полученных в количестве нескольких атомов. И тот, кто уже давно знает и любит химию, и тот, кто ещё только хочет сделать первые шаги в ней, найдут в книге что-то интересное и полезное для себя.

Аркадий Искандерович Курамшин

Химия / Научно-популярная литература / Образование и наука