В том случае, если притягивающая сила трубки на жидкость превосходит силу, с которой жидкость притягивается сама, очень тонкий слой жидкости прилегает к стенкам трубки и образует внутреннюю трубку, поднимающую жидкость, поверхность которой вследствие этого делается вогнутой полусферой. Так ведут себя в стеклянной трубке вода, спирт и масла.
Около окончания стенок трубки и в пределах сферы заметного активного действия притяжение её верхней части изменяется и непрерывно уменьшается по мере приближения жидкости к её окончанию, и рассматриваемый нами угол сильно изменяется. Так, погружая всё больше и больше стеклянную капиллярную трубку в спирт, видим, что поднятие внутренней жидкости над уровнем остаётся неизменным до тех пор, пока она не доходит до конца трубки. Тогда, продолжая погружать трубку, увидим, что поверхность спирта становится всё менее вогнутой и делается плоской, когда верхний конец трубки подходит к поверхности жидкости.
Похожее явление наблюдается и тогда, когда в стеклянную капиллярную трубку, открытую с обоих концов и удерживаемую вертикально, постепенно наливают спирт. Жидкость опускается к нижнему концу трубки. Верхняя поверхность колонки остаётся всё время вогнутой полусферой. Нижняя поверхность тоже вогнута, но эта вогнутость становится всё меньше и меньше по мере наливания спирта и увеличения длины его столбика. Когда эта длина делается равной высоте, обусловливаемой капиллярностью, т.е. высоте, на которую жидкость в трубке поднялась бы над уровнем, если бы трубка была погружена своим нижним концом в бесконечный сосуд, наполненный этой жидкостью, нижняя поверхность колонки становится плоской. Продолжая наливать спирт, видим, что эта поверхность становится всё более и более выпуклой, если сцепление воздуха с основанием трубки или какая-нибудь другая причина мешают этому основанию смачиваться жидкостью. Когда эта поверхность становится выпуклой полусферой, длина колонки равна удвоенной высоте, обусловленной капиллярностью. В самом деле, в поддержании этой колонки участвуют всасывание, производимое вогнутостью её верхней поверхности, и давление, производимое выпуклостью её нижней поверхности. На основании ранее сказанного эти силы одинаковы, и первая из них достаточна, чтобы поддерживать жидкость на высоте, обусловленной капиллярностью. Если продолжать наливать спирт, жидкая капля удлиняется и разрывается в тех точках её поверхности, где радиус кривизны от этого удлинения возрастает. В этом случае капля распространяется на нижнее наружное основание трубки, где образует новую каплю, которая делается всё более и более выпуклой до тех пор, пока не примет форму полусферы, радиус которой равен внешнему диаметру трубки. Тогда, если столб жидкости, длина которого уменьшилась, когда первая капля жидкости растеклась по основанию трубки, находится в равновесии, его длина равна сумме поднятий жидкости, которые имели бы место при двух погруженных в эту жидкость стеклянных трубках, внутренние радиусы которых были бы равны: один — как у первой трубки, другой — как наружный радиус той же трубки. Все эти выводы теории были подтверждены опытом.
Рассмотрим теперь бесконечный сосуд, заполненный разными жидкостями,
расположенными горизонтально одна над другой.
Действительно, действие призмы и этой жидкости на ту же жидкость, заключённую в трубке, очевидно, такое же, как и в последнем случае. Так как другие жидкости, содержащиеся в призме, заметно поднимаются над её нижним основанием, действие призмы на каждую из них не может их ни поднять, ни опустить; что касается взаимного действия этих жидкостей одних на другие, то оно уничтожилось бы, очевидно, если бы они все вместе образовали твёрдую массу, что можно предположить, не нарушая равновесия.