Читаем Изложение системы мира полностью

Рассмотрим теперь силы, действующие на жидкость в первой трубке. В её нижней части она испытывает следующие притяжения: во-первых, она притягивает сама себя; но взаимные притяжения тела не сообщают ему никакого движения, если оно твёрдое, поэтому, не нарушая равновесия, можно вообразить жидкость в первой трубке отвердевшей. Во-вторых, эта жидкость притянута лежащей ниже жидкостью второй трубки. Но мы видели, что взаимные притяжения этих двух жидкостей уничтожаются и нет надобности их учитывать. В-третьих, она притянута наружной жидкостью, окружающей вторую трубку; из этого притяжения возникает вертикальная сила, направленная вниз, которую мы назовём второй силой. Мы видим здесь, что если закон притяжения, зависящий от расстояния, одинаков для молекул первой трубки и для молекул жидкости, так что они отличаются только интенсивностью в одинаковых объёмах, эти интенсивности относятся между собой как первая сила ко второй, так как внутренняя поверхность жидкости, окружающей вторую трубку, — та же самая, что и внутренняя поверхность первой трубки. Поэтому две массы отличаются только своей толщиной, но поскольку притяжение масс делается незаметным на заметных расстояниях, разность в их толщине, если она ощутима, не оказывает никакого влияния на их притяжения. Наконец, в-четвёртых, жидкость первой трубки притягивается вертикально вверх этой трубкой. В самом деле, вообразим эту жидкость разделённой на бесконечное число маленьких вертикальных колонн. Если через верхний конец одной из этих колонн провести горизонтальную плоскость, часть трубки ниже этой плоскости не создаёт никакой вертикальной силы в колонне, а следовательно, нет вертикальной силы, создаваемой этой трубкой, кроме силы, вызванной её частью, лежащей выше плоскости, и ясно, что вертикальное притяжение этой части трубки на колонну такое же, как всей трубки на равную и подобным же образом расположенную колонну во второй трубке. Поэтому полная вертикальная сила, созданная притяжением первой трубки на жидкость, заключённую в ней, равна силе, созданной притяжением этой трубки на жидкость, заключённую во второй трубке. Следовательно, эта сила равна первой силе.

Объединяя все вертикальные притяжения, испытываемые жидкостью, заключённой в первой вертикальной ветви канала, получим вертикальную составляющую, направленную снизу вверх и равную удвоенной первой силе без второй. Эта равнодействующая должна уравновешивать избыток давления, вызванного весом столба жидкости, возвышающегося над её уровнем. Поэтому она равна этому объёму, умноженному на удельный вес жидкости.

Поскольку действие трубки имеет место только на неощутимых расстояниях, призма тоже действует только на колонны жидкости, крайне близкие к её поверхности. Поэтому можно не учитывать кривизну её стенок и рассматривать их как бы развёрнутыми в плоскость. И первая, и вторая силы тогда будут равны произведению ширины этой плоскости, или, что то же, периметра внутреннего основания трубки на постоянные коэффициенты, которые на основании предыдущего могут обозначать соответствующие интенсивности притяжения молекул трубки и жидкости при равенстве их объёмов. Равнодействующая, о которой мы говорили, будет поэтому пропорциональна этому периметру; и, следовательно, объём поднятой жидкости также будет ему пропорционален.

Средняя из высот всех точек верхней поверхности этой жидкости над уровнем есть частное от деления её объёма на основание призмы. Поэтому эта высота пропорциональна периметру призмы, разделённому на её основание.

Если призма представляет собой цилиндр, периметр её основания пропорционален её диаметру, а основание пропорционально квадрату диаметра. Поэтому средняя высота жидкости обратно пропорциональна диаметру. Когда призма очень узка, эта высота очень мало отличается от высоты самой низкой точки поверхности внутренней жидкости. Если жидкость смачивает стенки трубки, как спирт и вода смачивают стекло, эта поверхность очень близка к полусфере, и, исходя из этого, легко прийти к выводу, что для получения её средней высоты над уровнем надо к высоте её самой низкой точки прибавить 1/6 диаметра трубки. Эта последняя высота, исправленная таким образом, обратно пропорциональна диаметру трубки. Г-н Гей-Люссак подтвердил эти теоретические результаты большим числом опытов, проделанных с величайшей тщательностью и очень точными методами с водой, спиртом различной плотности, эфирными маслами и т.д.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

История / Технические науки / Образование и наука / Астрономия и Космос