Теперь, когда в предыдущих книгах изложены законы небесных движений и действий движущих сил, остаётся их сравнить, чтобы узнать силы, движущие тела солнечной системы, причём без каких-либо гипотез, а путём последовательных геометрических рассуждений прийти к принципу всемирного тяготения, из которого эти законы вытекают. Именно в небесном пространстве законы механики наблюдаются с наибольшей точностью. На Земле их результаты осложняет столько обстоятельств, что эти законы трудно распознать и ещё труднее подчинить вычислениям. Но движения тел солнечной системы, разделённых громадными расстояниями и подверженных действию главной силы, влияние которой легко вычислить, искажаются только такими малыми силами, что оказалось возможным в основных формулах охватить все изменения в этой системе, уже происшедшие и те, которые должны произойти с течением времени. Здесь нет места неясным причинам, не поддающимся анализу и изменяемым по прихоти воображения, чтобы объяснить явление. Закон всемирного тяготения имеет то преимущество, что поддаётся вычислениям, и, сравнивая результаты этих вычислений с наблюдениями, можно получить наиболее верный способ подтверждения его существования. Мы увидим, что этот великий закон природы представляет все небесные явления, вплоть до самых малых подробностей; что нет ни одного самого малого неравенства, которое не вытекало бы с удивительной точностью из этого закона, и что часто он опережал наблюдения, открывая нам причины многих странных движений, которые хотя и предвиделись астрономами, но из-за своей сложности и исключительной медленности могли бы быть определены посредством одних только наблюдений лишь через многие века. С помощью этого закона эмпиризм был полностью изгнан из астрономии, являющейся теперь великой проблемой механики, для которой элементы движения светил, их фигуры и их массы — независимые и единственно необходимые данные, которые эта наука должна получать из наблюдений. Потребовалась самая изощрённая геометрия для разрешения этой проблемы и для вывода теорий различных явлений, представляемых нам небесами. Я их собрал в моей «Небесной механике». Здесь я ограничусь лишь изложением главных положений этого труда, отмечая путь, по которому следовали геометры, чтобы их получить, и попытаюсь сделать понятными их доводы, насколько это возможно без применения математического анализа.
Глава I О ПРИНЦИПЕ ВСЕМИРНОГО ТЯГОТЕНИЯ
Среди явлений, наблюдаемых в солнечной системе, эллиптическое движение планет и комет кажется наиболее пригодным, чтобы привести нас к общему закону сил, которые ими движут. Наблюдения показали нам, что площади, описываемые вокруг Солнца радиусами-векторами планет и комет, пропорциональны времени; а в предыдущей книге мы видели, что для этого нужно, чтобы сила, отклоняющая непрерывно каждое из этих тел от прямого пути, была направлена постоянно к началу радиусов-векторов, и, следовательно, стремление планет и комет к Солнцу является необходимым следствием пропорциональности площадей и времени, затраченному на описание их радиусами-векторами.
Чтобы определить закон этого стремления, предположим, что планеты движутся по круговым орбитам; это мало отличается от истины. Тогда квадраты их истинных скоростей пропорциональны квадратам радиусов этих орбит, разделённым на квадраты времени обращения. Но, по законам Кеплера, квадраты этих скоростей относятся между собой как кубы тех же радиусов. Поэтому квадраты скоростей обратно пропорциональны этим радиусам. Раньше мы видели, что центробежные силы многих тел, движущихся по окружностям, относятся между собой как квадраты скоростей, разделённые на радиусы описанных окружностей. Поэтому стремление планет к Солнцу обратно пропорционально квадратам радиусов их орбит, предполагаемых круговыми. Эта гипотеза, правда, не вполне строга, но, поскольку постоянное отношение квадратов времён обращения планет к кубам больших осей их орбит не зависит от эксцентриситета, естественно думать, что оно существует и в случае круговых орбит. Таким образом, закон, по которому тела притягиваются к Солнцу обратно пропорционально квадратам расстояний от него, ясно указывается этим отношением.