Аналогия заставляет нас считать, что этот закон, распространяющийся на все планеты, в равной степени имеет место и для одной и той же планеты на её разных удалениях от Солнца. Её эллиптическое движение не оставляет никаких сомнений в этом отношении. Для доказательства проследим это движение, начиная от выхода планеты из перигелия. В это время её скорость максимальна, и она стремится удалиться от Солнца, преодолевая силу его тяготения; её радиус-вектор увеличивается и образует с направлением её движения тупые углы. Сила тяготения, направленная к Солнцу и разложенная по этому направлению, всё более и более уменьшает скорость планеты, пока она не достигнет афелия. В этой точке радиус-вектор снова становится перпендикулярным к кривой, скорость минимальна, и, так как стремление удалиться от Солнца меньше, чем сила его притяжения, планета к нему приближается, описывая вторую половину своего эллипса. На этой части пути сила тяготения к Солнцу увеличивает её скорость, в то время как раньше она её уменьшала. Планета приходит в перигелий со своей первоначальной скоростью и начинает второе обращение, подобное первому. Поскольку в перигелии и в афелии кривизна эллипса одинакова, оскулирующие радиусы одинаковы, следовательно, и центробежные силы в этих двух точках относятся как квадраты скоростей. Так как секторы, описанные в одинаковые элементы времени, равны, скорости в перигелии и в афелии обратно пропорциональны соответствующим расстояниям планеты от Солнца. Поэтому квадраты этих скоростей обратно пропорциональны квадратам тех же расстояний, а так как в перигелии и в афелии центробежные силы в оскулирующих окружностях, очевидно, равны, силе тяготения планеты к Солнцу, эти силы тяготения обратно пропорциональны квадратам расстояний до этого светила.
Таким образом, теоремы Гюйгенса о центробежной силе были достаточны, чтобы узнать закон, описывающий стремление планет к Солнцу, так как очень вероятно, что закон, действительный для всех планет и подтверждающийся для каждой из них в перигелии и в афелии, распространяется на все точки планетных орбит и вообще на все расстояния от Солнца. Но чтобы установить его совершенно неопровержимым образом, было необходимо получить выражение силы, которая, будучи направленной в фокус эллипса, заставляла бы тело описывать эту кривую. Ньютон нашёл, что, действительно, эта сила обратно пропорциональна квадрату радиуса-вектора. Надо было ещё показать, что сила тяготения к Солнцу не изменяется от одной планеты к другой иначе, чем в зависимости от расстояния до этого светила. Этот великий геометр показал, что это следует из закона пропорциональности квадратов времён обращения кубам больших осей орбит. Если предположить, что все планеты находятся в покое на одинаковых расстояниях от Солнца и предоставлены силам тяготения, направленным к его центру, они бы опустились за равное время на равные расстояния. Этот результат следует распространить и на кометы, хотя большие оси их орбит и неизвестны, так как во второй книге было показано, что величины площадей, описанных их радиусами-векторами, подчинены действию закона пропорциональности квадратов времён их обращения кубам этих осей.
Анализ, который в своих обобщениях охватывает всё, что может вытекать из данного закона, показывает нам, что не только эллипс, но и все конические сечения могут быть описаны под влиянием силы, удерживающей планеты на своих орбитах. Поэтому комета может двигаться по гиперболе. Но тогда она была бы видимой только один раз и после появления удалилась бы за пределы солнечной системы, а затем приблизилась бы к новым солнцам, чтобы снова удалиться от них, пробегая различные системы, рассеянные в необъятности небес. Имея в виду бесконечное разнообразие природы, весьма вероятно, что существуют и такие светила. Их появление должно быть очень редким, и мы гораздо чаще наблюдаем кометы, движущиеся по замкнутым орбитам и возвращающиеся через более или менее продолжительное время в области неба, близкие к Солнцу.
Спутники испытывают такое же стремление к этому огромному телу, как и планеты. Если бы Луна не была подвержена его действию, то вместо того чтобы описывать почти круговую орбиту вокруг Земли, она скоро кончила бы тем, что покинула бы её. И если бы этот спутник, а также и спутники Юпитера, не увлекались Солнцем, следуя тем же законам, что и планеты, в их движениях появились бы значительные неравенства, которых наблюдение не обнаруживает. Итак, планеты, спутники и кометы — все подчинены одному закону тяготения к этому светилу. Одновременно с тем, как спутники движутся вокруг своих планет, вся система планеты и её спутников увлекается общим движением в пространстве и удерживается той же силой в своём движении вокруг Солнца. Таким образом, относительное движение планеты и её спутников почти таково, как если бы планета находилась в покое и не испытывала никакого внешнего воздействия.