Глубокая аналогия позволяет нам распространить это притягивающее свойство и на планеты, не имеющие спутников. Сферичность, свойственная всем этим телам, ясно указывает, что их молекулы собраны вокруг их центров тяжести силой, которая на равных расстояниях одинаково увлекает их к этим центрам. Эта сила проявляется также в возмущениях, вносимых ею в движение планет. Но следующее соображение не оставляет никакого сомнения в её существовании. Мы видели, что если бы планеты и кометы были расположены на одинаковых расстояниях от Солнца, их тяготение, направленное к этому светилу, было бы пропорционально их массам; а по всеобщему закону природы, действие равно и обратно противодействию. Таким образом, все эти тела действуют на Солнце и притягивают его соразмерно своим массам. Следовательно, они сами одарены силой притяжения, пропорциональной их массам и обратно пропорциональной квадратам расстояний. По тому же принципу спутники, согласно тому же закону, притягивают к себе планеты и Солнце. Итак, это притягательное свойство оказываемся общим для всех небесных тел.
Оно не нарушает эллиптическое движение планет вокруг Солнца, если рассматривать только их взаимное действие. В самом деле, относительное движение системы тел не изменяется, если им сообщается общая скорость. Поэтому, приложив в обратном направлении к Солнцу и к планете движение первого из этих тел и испытываемое им действие со стороны второго, можно считать Солнце неподвижным. Но тогда планета будет притягиваться к нему силой, обратно пропорциональной квадрату расстояния и прямо пропорциональной сумме их масс, и её движение вокруг Солнца будет эллиптическим. Из подобного же рассуждения видно, что оно сохранит свою эллиптичность, если предположить, что система, состоящая из Солнца и планеты, уносится общим движением в пространство. Столь же ясно, что эллиптическое движение спутника не нарушается поступательным движением его планеты, а также не нарушалось бы воздействием Солнца, если бы это воздействие было в точности одинаково на планету и на спутник.
Однако воздействие планеты на Солнце влияет на продолжительность её обращения, которое делается тем короче, чем эта планета больше, поэтому отношение куба большой оси орбиты к квадрату времени обращения пропорционально сумме масс Солнца и планеты. Но поскольку это отношение почти одинаково для всех планет, их массы должны быть очень малы по сравнению с массой Солнца, что в равной мере верно и для спутников, сравниваемых с их планетой. Это же подтверждается объёмами рассматриваемых тел.
Притягивающая способность небесных тел свойственна не только их массе в целом, но присуща каждой из их молекул. Если бы Солнце действовало только на центр Земли, не притягивая каждую из её частей, в океане происходили бы колебания, несравненно большие и очень отличные от наблюдаемых колебаний. Сила притяжения Земли к Солнцу, таким образом, есть результат сил тяготения всех молекул, которые, следовательно, притягивают Солнце сообразно своим массам. Впрочем, каждое тело на Земле тяготеет к её центру с силой, пропорциональной его массе. Следовательно, оно действует на планету и притягивает её в той же пропорции. Если бы это было не так и если бы какая-то часть Земли, какой бы маленькой мы её не предполагали, не притягивала бы другую часть так же, как та притягивает её, центр тяжести Земли перемещался бы в пространстве под действием тяжести, что совершенно неприемлемо.
Итак, сравнение небесных явлений с законом движения приводит нас к великому
закону природы, который гласит: