[BMAM] A. Bundy, D. MacKenzie, M. Atiyah, A. MacIntyre
, The Nature of Mathematical Proof // Philosophical Transactions of the Royal Society A; Volume 363, Number 1835, October 15, 2005.[CAH] I. Cahit
, On the algorithmic proofs of the four color theorem, — препринт.[CAZ] H.-D. Cao, X.-P. Zhu
, A complete proof of the Poincar´e and geometrization conjectures — application of the Hamilton–Perelman theory of the Ricci flow // Asian Journal of Mathematics 10(2006), — 165–498.[CJW] J. Carlson, A. Jaffe, A. Wiles
, The Millennium Prize Problems — American Mathematical Society, Providence, RI, 2006.[CEL] C. Cellucci
, Why proof? What is a proof? // G. Corsi, R. Lupacchini, Deduction, Computation, Experiment. Exploring the Effectiveness of Proof — Springer, Berlin, 2008.[CHA1] G. J. Chaitin
, Algorithmic Information Theory — Cambridge University Press, Cambridge and New York, 1992.[CHA2] G. J. Chaitin
, The Limits of Mathematics: A Course on Information Theory and the Limits of Formal Reasoning — Springer-Verlag, London, 2003.[CHE1] G. Chen, S. G. Krantz, D. Ma, C. E. Wayne, H. H. West
, The Euler–Bernoulli beam equation with boundary energy dissipation, in Operator Methods for Optimal Control Problems (Sung J. Lee, ed.) — Marcel Dekker, New York, 1988 — 67–96.[CHE2] G. Chen, S. G. Krantz, C. E. Wayne, H. H. West
, Analysis, designs, and behavior of dissipative joints for coupled beams // SIAM Jr. Appl. Math., 49(1989) — 1665–1693.[CHO] S.-C. Chou, W. Schelter
, Proving geometry theorems with rewrite rules // Journal of Automated Reasoning 2(1986) — 253–273.[COL] J. B. Conrey, Xian-Jin Li
, A note on some positivity conditions related to zeta and L-functions // Internat. Math. Res. Notices 18(2000) — 929–940.[COS] R. Constable
, Types in logic, mathematics and programming // Handbook of Proof Theory, S. Buss, ed. — North-Holland: Elsevier, Amsterdam, 1998.[CON] J. H. Conway, C. Goodman-Strauss, N. J. A. Sloane
, Recent progress in sphere packing // Current Developments in Mathematics, 1999 (Cambridge, MA) — 37–76, International Press, Somerville, MA, 1999.[COO] S. A. Cook
, The complexity of theorem-proving procedures // Proceedings of the 3rd Annual ACM Symposium on Theory of Computing — Association for Computing Machinery, New York, 1971 — 151–158.[DAN] G. B. Dantzig
, On the significance of solving linear programming problems with some integer variables // Econometrica 28(1957) — 30–44.[DEB1] L. de Branges
, Hilbert Spaces of Entire Functions — Prentice-Hall, Englewood Cliffs, NJ, 1968.[DEB2] L. de Branges
, A proof of the Bieberbach conjecture // Acta Math. 154(1985) — 137–152.[DLP] R. A. De Millo, R. J. Lipton, A. J. Perlis
, Social processes and proofs of theorems and programs // Communications of the ACM 22(1979) — 271–280.[DEV1] K. Devlin
, The Millennium Problems: The Seven Greatest Unsolved Mathematical Puzzles of Our Time — Basic Books, New York, 2003.[EKZ] S. B. Ekhad, D. Zeilberger
, A high-school algebra, «formal calculus», proof of the Bieberbach conjecture [after L. Weinstein] // Jerusalem Combinatorics 93 — 113–115 — Contemporary Math. 178, American Mathematical Society, Providence, RI, 1994.[FTO] L. Fejes T’oth
, On close-packings of sphere in spaces of constant curvature // Publ. Math. Debrecen 3(1953) — 158–167.[FET] J. H. Fetzer
, Program verification: the very idea // Communications of the ACM 37(1988) — 1048–1063.[FIP] C. Fitzgerald, C. Pommerenke
, The de Branges theorem on univalent functions // Trans. American Math. Society 290(1985) — 683–690.[FRE1] G. Frege
, Begriffsschrift und andere Aufs̈atze — Hildesheim, G. Olms, 1964.[FRE2] G. Frege
, Grundgesetze der Arithmetik, two volumes in one — Hildesheim, G. Olms, 1964.[GAR] M. Gardner
, The Second Scientific American Book of Mathematical Puzzles and Diversions — University of Chicago Press, Chicago, IL, 1987.[GAJ] M. R. Garey, D. S. Johnson
, Computers and Intractability: A Guide to the Theory of NP-Completeness — W. H. Freeman and Company, San Francisco, CA, 1991.[GON] G. Gonthier
, Formal proof — the four-color theorem // Notices of the American Mathematical Society 55(2008) — 1382–1393.[GLS] D. Gorenstein, R. Lyons, R. Solomon
, The Classification of the Finite Simple Groups — American Mathematical Society, Providence, RI, 1994.[GRA] J. Gray
, The Hilbert Challenge — Oxford University Press, New York, 2000.