Чем полезна избирательность в отношении ориентации? Ответ все тот же: она экономит ресурсы благодаря уменьшению объема информации, передаваемой на следующие этапы зрительной обработки (в данном случае в высшие корковые отделы). Важно отметить, что это делается с сохранением значимой информации, необходимой для идентификации объекта. Самые важные визуальные стимулы – это объекты, а объекты определяются своими краями. Во многих случаях мозгу достаточно знать об ориентации краев – и ни о чем больше, – чтобы догадаться, какой перед ним объект.
На правом рисунке на следующей странице показаны только края – контуры собаки, – которые регистрируются простыми клетками первичной коры. Несмотря на то, что в контурном рисунке частично теряется богатство исходного изображения, собака остается легкоузнаваемой. Эти корковые нейроны делают огромный шаг вперед в процессе извлечения признаков, начатом в сетчатке. Данный конкретный признак, ориентированный край, создает упрощенное схематическое изображение объекта, передача которого в разы более экономичный процесс, чем передача полного изображения. Это можно сравнить с векторным и растровым способом представления изображений в компьютерной графике. Изображения в векторном формате имеют гораздо меньший объем и передаются гораздо быстрее, чем растровые, в которых записывается и передается каждый пиксель. Растровые изображения – самый полный, но и очень неэффективный способ передачи графической информации.
Второй тип клеток, который Хьюбел и Визель назвали «сложными» клетками, также реагировал на линии и края определенной ориентации, но был менее требовательным к их местоположению. Эти клетки возбуждались, когда край имел правильную ориентацию, но был привязан к более широкой зоне. На рисунке, как и в предыдущем примере, вертикальные штрихи обозначают отдельные спайки, генерируемые клеткой, когда в ее рецептивное поле попадает линия с правильным наклоном. Когда же линия имеет другой угол наклона, клетка молчит.
Итак, обобщим: простая клетка возбуждается светлым (или темным) краем определенной ориентации, который находится в конкретном месте поля обзора. Сложная клетка также чувствительна к краю определенной ориентации, но с некоторой степенью свободы: она возбуждается, если такой край появляется где угодно в пределах довольно обширного рецептивного поля, а не только в узкой области.
Вышесказанное важно, потому что эти клетки, по сути, занимаются вычленением такого абстрактного признака, как линейность, до некоторой степени не привязанного к конкретному визуальному стимулу. Хотя их рецептивные поля все равно ограничены, эти клетки выявляют линейность в относительно обширной области, а не в конкретном месте. Это возвращает нас к проблеме, упомянутой в начале книги: к нашей способности распознавать букву А независимо от того, где ее изображение падает на центральную область нашей сетчатки. В 1960-х гг. был разработан последовательный иерархический метод распознавания более сложных объектов, основанный на переходе от обычных неориентационных клеток к простым и далее к сложным избирательным в отношении ориентации клеткам. Эта модель работала не очень хорошо, однако сам механизм, отличающий сложные клетки от простых, сыграл ключевую роль в изобретении важного типа компьютерного зрения (подробнее обо всем этом мы поговорим чуть позже).
Дальше наш путь лежит в почти неизведанные края – в кору головного мозга. Наше понимание коры, говоря откровенно, находится на детсадовском уровне. Пока у нас есть лишь отдельные островки знаний – знаний об отдельных корковых областях, функции которых нам хотя бы приблизительно известны. К счастью, постепенно эти островки начинают соединяться в единый ландшафт – очень грубую, но все же целостную картину того, как организована система зрительного восприятия в головном мозге.
7 | Что дальше: лоскутное одеяло зрительной коры
Есть известные неизвестные вещи – те, о которых мы знаем, что мы их не знаем. Но есть также неведомые неизвестные вещи – такие, о которых мы не знаем, что мы их не знаем… Последние, как правило, представляют наибольшую трудность.