Но кто особенно любилъ большія числа, такъ это индусы, горячіе поклонники арииетики и ея творцы. Умнье обращаться съ громаднйшими числами считалось у нихъ признакомъ чрезвычайной смышлености и ставилось въ высокую заслугу. Даровитый математикъ такъ же былъ славенъ въ Индіи и достигалъ такой же популярности, какая у насъ выпадаетъ на долю только побдителя или поэта. Интересна легенда о нкоемъ индус Bodisattva какъ онъ сталъ свататься за одну двушку, и какъ отецъ невсты соглашался отдать ее только въ томъ случа, если юноша докажетъ свое особое искусство въ письм, въ единоборств, въ бг и въ ариметик. По требованію отца, Bodisattva даетъ названія громаднымъ числамъ, кончая единицей 54-го разряца, т.-е. онъ оказывается въ состояніи прочесть число, выраженное длинной строкой въ 54 цифры, и что всего поразительне, такъ это то, что онъ выговариваетъ числа не по одному способу, а по нсколькимъ, по 6 или 7. Въ заключеніе ему даютъ задачу: пусть бы онъ указалъ самую наименьшую долю длины, какую только можетъ онъ придумать. Онъ назвалъ и указалъ 1/108 470 495 616 000 индусской мры длины. Онъ началъ такъ: эта доля, которую я указываю, составляетъ седьмую часть тончайшей пылинки; 7 тончайшихъ пылинокъ составляютъ одну небольшую пылинку; изъ 7 небольшихъ выходитъ такая, которую кружитъ втеръ; ихъ 7 даютъ одну, пристающую къ ног зайца; 7 подобныхъ послдней даютъ одну, пристающую къ ног барана; 7 пристающихъ къ ног барана образуютъ одну, пристающую къ ног буйвола; 7 пылинокъ буйвола составляютъ маковое зерпышко; 7 маковыхъ зернышекъ даютъ горчичное зерно, 7 горчичныхъ—ячменное, 7 ячменныхъ даютъ длину сустава пальца, изъ 12 суставовъ получаемъ пядь, изъ двухъ пядей — локоть, 4 локтя составляютъ лукъ и, наконецъ, 4000 луковъ даютъ индусскую мру длины, такъ наз. «y^oana». Таковъ переходъ отъ этой мры къ самой малой дол и такова дробь, выраженная, по нашему, въ трилліонныхъ частяхъ.
Знаменитые математики древней Греціи, Пиагоръ и Архимедъ, не такъ интересовались ариметикой, какъ геометріей. Ариметика у нихъ была не своя, а заимствованная главнымъ образомъ у индусовъ. Неудивительно поэтому, что великій математикъ Пиагоръ ограничивался въ своихъ вычисленіяхъ только 16-ю разрядами счетныхъ единицъ и заканчивалъ, если перевести числа на нашу систему, квадрилліонами (единица съ 15 нулями). Но Архимедъ пошелъ въ этомъ случа довольно далеко. Подражая индусамъ, онъ поставилъ себ такую задачу: высчитать число песчинокъ во всей вселенной, даже и въ томъ предположеніи, что весь міръ состоитъ изъ песчинокъ. Архимедъ ршилъ задачу такъ. Пусть, говоритъ онъ, вся вселенная образуетъ шаръ съ центромъ на солнц и съ радіусомъ, равнымъ разстоянію отъ солнца до земли. Пусть вся вселенная состоитъ изъ песчинокъ и притомъ изъ такихъ мелкихъ, что тысяча песчинокъ равна маковому зерну. Предположимъ, что 40 маковыхъ зеренъ, уложенныя въ рядъ, образуютъ дюймъ длины. При всхъ этихъ условіяхъ, по вычисленію Архимеда, песчинокъ во всей вселенной мене, чмъ сколько выражаетъ число, обозначенное единицей съ 64 нулями. Интересно, какъ же выговорить такое громадное число или какъ его представить въ наглядномъ и доступномъ вид? Архимедъ идетъ такимъ путемъ: 10000 простыхъ единицъ онъ называетъ миріадой. Миріада миріадъ=100 000 000, это будетъ единица 9-го разряда. Назовемъ ее хоть группой. Группа группъ будетъ единицей 17-го разряда=100 000 000 000 000 000. Назовемъ эту группу группъ хоть массой. Тогда масса массъ составитъ единицу 33-го разряда. Назовемъ ее, пожалуй, хоть громадой. Тогда громада громадъ будетъ составлять единицу 65-го разряда и явится отвтомъ на задачу Архимеда.