Теория графов – это классическая область математики с огромным количеством приложений. В виде графа можно представить систему железных дорог, газопровод, последовательность операций на крупном производстве или слов в русской речи и многое другое.
У
Случайный граф – естественная модель во многих ситуациях. Например, дружба в социальных сетях возникает непредсказуемым образом. В телекоммуникациях или электрических сетях на линиях связи могут случаться сбои. Если попытаться смоделировать нейронную сеть мозга, то взаимодействия нейронов можно выявить только с определенной вероятностью.
В последнее время в связи с развитием интернета и социальных сетей и небывалой доступностью данных во всех областях – от энергоснабжения до биологии – интерес к теории случайных графов особенно вырос. Новые, очень сложные результаты появляются почти каждый день.
Что же говорит теория случайных графов об устойчивости сети?
Результат Эрдеша – Реньи
В связи с устойчивостью интернета нас интересует вопрос о
Рис. 4.5.
Слева: мини-сеть в виде графа; каналы 1–2 и 1–3 недоступны; граф несвязный, из вершины 1 нельзя попасть в вершины 2 и 3. Справа: социальная сеть в виде графа; пользователь 1 не знаком с пользователями 5 и 6; граф несвязный; нет цепочки знакомых между пользователями 5, 6 и остальнымиЭрдеш и Реньи задались вопросом: при какой вероятности помех сеть заданного размера остается связной? Результат получился поразительным! Оказывается, в больших сетях связность сохраняется даже при повышенной вероятности помех.
Например, возьмем сеть из 100 связанных между собой компьютеров. Получается, что каждый отдельный канал может быть недоступен с вероятностью аж 86 %, тем не менее сеть останется связной с вероятностью как минимум… 99 %! Эта ситуация изображена на рис. 4.6: 86 % из всех возможных линий отсутствует, однако сразу видно, что из любого узла можно добраться до любого другого.
Рис. 4.6.
Сеть из 100 компьютеров в виде графа. Вероятность недоступности канала 86 %А сеть из 1000 узлов – это и вовсе нечто фантастическое. Канал связи может быть недоступен с вероятностью 98 %, а связность сохраняется с вероятностью 99,9 %! Чем больше сеть, тем сильнее результат.
В табл. 4.2 мы приводим результаты для сетей разных размеров. Легко заметить, что число в самой правой колонке не что иное, как
Таблица 4.2.
Результат Эрдеша – РеньиНиже во врезке приведена более общая математическая формулировка результата. Этот текст рассчитан на уровень средней школы, но если вы не хотите вдаваться в подробности, можете его пропустить.
Символ ln(
Теорема Эрдеша – Реньи.
Допустим, сеть состоит изто связность сети сохраняется с вероятностью не меньше, чем
В табл. 4.2 во втором и третьем столбце все значения умножены на 100 %. Во втором столбце указаны значения, полученные с помощью формулы (4.1). Поскольку ln(
Для многих приложений важно умение работать с сетями, в которых изначально присутствуют не все возможные связи. Например, таковы сети автомобильных дорог, социальные сети и тот же интернет.