Следует заметить, что самовращающиеся инструменты требуют к себе самого внимательного отношения как при изготовлении, так и при эксплуатации. Малейшая небрежность при изготовлении или неточность установки на станке не позволит достигнуть положительного эффекта. Но если все сделать правильно, то эффект от этих резцов будет очень высоким.
Говоря о принципиально новых методах резания металлов, нельзя не сказать несколько слов о так называемом «попутном» точении. Все мы давно привыкли к тому, что любое точение на токарных станках является встречным, т. е. вращающаяся заготовка при точении вращается или движется навстречу резцу.
При «попутном точении» (рис. 48) заготовка получает быстрое вращательное движение, определяющее скорость резания. Инструмент (резец) медленно поворачивается вокруг оси
Суппорт станка для «попутного точения» представляет собой диск с настроенными в его пазах резцами. Вершины режущих кромок резцов при вращении медленно описывают строго определенную окружность вокруг одной оси. При встрече с заготовкой, во время контакта с ней, они вынуждены снимать стружку. Это длится до тех пор, пока режущая кромка очередного резца дойдет до линии центра детали. Дальше в работу вступает следующий резец, настроенный на другой размер или конфигурацию детали. Таким образом, менее чем за один оборот суппорта с заготовки будет снят заданный слой металла.
Для того чтобы перестроить станок на обработку детали другой формы, нужно только сменить диск с настроенными резцами. Резцы настраивают вне станка согласно чертежу детали. «Попутное точение» дает большой эффект при обработке различных фланцев, втулок, подшипниковых колец и других подобных им деталей. Метод «попутного точения» и станок для него[6]
разработан доктором технических наук профессором Григором Арутюновичем Шаумяном.В ближайшие годы изменится также и измерительный инструмент, которым пользуется каждый станочник. Я не буду здесь говорить о тех сложных электронных измерительных приборах и машинах, которые предназначены в основном для работы в лабораториях и научно-исследовательских институтах. Скажу несколько слов, каким будет обычный измерительный инструмент, который токарь или шлифовщик постоянно держит в руках и без которого не обойтись ни на одном рабочем месте.
Возьмем для примера обычный, известный всем микрометр для измерения деталей с точностью до 0,01 миллиметра. В настоящее время такая точность при работе на токарных и шлифовальных станках зачастую оказывается недостаточной, особенно в инструментальном и приборостроительном производствах. Чтобы вести измерение с большей точностью шлифовщику или токарю приходится тщательно мыть руки, брать концевые меры, чувствительно-рычажный пассаметр или чувствительный специальный микрометр с ценой деления 0,002 миллиметра. Затем набрать блок плиток на нужный размер, тщательно их промыть бензином или спиртом и протереть замшей, а потом соединить их вместе, притерев друг к другу. По блоку этих плиток устанавливают на нужный размер чувствительный микрометр или пассаметр, и тогда только можно измерить деталь с точностью до 0,002 миллиметра. Этот сложный процесс можно упростить и ускорить раз в 20, используя микрометр, показанный на рис. 49. Он гарантирует точность не 0,002, а 0,001 миллиметра.
Микрометр имеет не один (как обычно), а два барабана с делениями. На первом отсчитывают сотые доли миллиметра, а на втором — тысячные. Микрометр снабжен тарированной трещеткой, так что показанный размер не зависит от силы нажима на измеряемую деталь, что очень важно, если мы хотим определить какой-нибудь размер с точностью до 0,001 миллиметра. Измерительные плоскости нового микрометра оснащены твердым сплавом, и поэтому не подвержены износу. Микрометр имеет невращающийся измерительный стержень в отличие от известных сейчас простых и рычажно-чувствительных микрометров. Это очень важно, так как такой стержень предохраняет измеряемую деталь от повреждения. Микрометр имеет теплоизоляционное покрытие, так что тепло от руки станочника не влияет на точность измерений.