Читаем Красота в квадрате полностью

[12] Клотоида — это кривая, кривизна которой пропорциональна длине. В алгебраической форме это можно записать так: кривизна = ks, где k — произвольная константа, s — расстояние вдоль кривой от начала координат. Бельгийский математик Фрэнки Диллен создал целый новый класс спиралей, рассчитывая их кривизну по формуле, представляющей собой многочлен с переменной s. (Многочлен, или полином, — это выражение, состоящее из переменных и степеней переменных, в котором используются только операции сложения, вычитания и умножения.) Диллен назвал эти кривые «полиномными спиралями». Они очень красивы; одна из любимых кривых Диллена — так называемая спираль Пикассо.

Кривизна = 10 (−45 + 51s −18s2 + 2s3)

[13] Joe Moran, On Roads, Profile Books, 2009.

[14] Robert Cartmell, The Incredible Scream Machine, Amusement Park Books, 1987; Chemin de Fer Aerien, La Nature, 1903.

Прежде чем открыть для публики аттракцион с мертвой петлей, было проведено три испытания: первое — с обезьянами в качестве пассажиров, второе — с грузом тяжелее веса крупного человека и третье — с участием акробата.

[15] George Berkeley, The Analyst: Or, a Discourse Addressed to an Infidel Mathematician, 1734.

ГЛАВА 9

[1] Steven G. Krantz, The Proof is in the Pudding, Springer, 2011.

[2] Martin Gardner, Mathematical Games: The Entire Collection of His Scientific American Columns, CD, 2005.

[3] Львов (укр. Львів) находится сейчас на территории Украины.

[4] В период написания книги лучшими кандидатами на звание самого скучного числа было число 224, которое являлось в то время наименьшим числом, не имеющим своей страницы в «Википедии», и 14 228, наименьшее число, которого не было в онлайновой Энциклопедии целочисленных последовательностей (Encyclopedia of Integer Sequences). Но поскольку об этих числах написано здесь, они стали интересными.

[5] Если количество точек на линии окружности равно n, то количество секторов рассчитывается по формуле

[6] В отличие от Фреге, некоторые специалисты по философии математики считают, что утверждение «отрицание отрицания утверждения А есть утверждение А» содержит глубокое противоречие.

[7] Douglas R. Hofstadter, Metamagical Themas, Basic Books, 1996.

[8] Martin Gardner, Logical Paradoxes, The Antioch Review, 1963.

[9] John Allen Paulos, I Think, Therefore I Laugh, Penguin, 2000.

[10] Одна из главных целей теории множеств состояла в том, чтобы доказать полноту математики. Другими словами, чтобы доказать, что, если теорема истинна, значит, она доказуема в рамках данной системы. Однако в 1931 году Курт Гедель доказал, что на самом деле это не так: в любой системе, достаточно мощной, чтобы включать в себя арифметику, обязательно найдутся утверждения, которые невозможно ни доказать, ни опровергнуть. Работа Геделя оказала существенное влияние на математическую философию, поскольку ограничила сферу действия логики в качестве основы для математики.

[11]Николя Бурбаки. Теория множеств. М. : Либроком, 2010. Интересно то, что Бурбаки ни разу не упоминает имя Курта Геделя (см. предыдущее примечание).

[12] Полдавия (фр. Poldèvie) — это шуточная страна, придуманная в 1929 го­ду одним французским журналистом с правыми убеждениями и упомянутая в письме членам парламента левого крыла, в котором он от имени угнетенного народа Полдавии просит их вмешаться. После того как группа Бурбаки сделала Полдавию своей родиной, эта шутка начала часто появляться в работе нескольких французских писателей послевоенного периода. Профессор французского языка и литературы Принстонского университета и отец автора этой книги Дэвид Беллос сказал, что это «редкий пример того, как математический юмор стал темой литературных произведений».

[13] Maurice Mashaal, Bourbaki, American Mathematical Society, 2006.

[14] A. R. D. Mathias, A term of length 4,523,659,424,929, Synthese, 2002.

[15] Bob Moon, Who Controls the Curriculum? The story of New Maths 1960–1980, International Perspectives in Curriculum History, 1987.

[16] В настоящее время насчитывается более десятка систем для проверки доказательств; самые известные — Coq, HOL Light, Isabelle и Mizar. Систему Mizar в 1970-х годах начали разрабатывать в Польше; ее пользователи утверждают, что она содержит самую крупную логически связную базу формализованных доказательств.

[17] Имеется в виду, что можно доказать все математические утверждения, которые в принципе доказуемы (см. примечание о Геделе).

[18] Steven G. Krantz, The Proof is in the Pudding, Springer, 2011.

ГЛАВА 10

[1]Теорема. Если для нахождения простых чисел просеиваются n чисел, то в этом случае достаточно проанализировать на наличие простых чисел числа, не превышающие √n.

Перейти на страницу:

Похожие книги