Читаем Курс теоретической астрофизики полностью

Возьмём элементарный объём с площадью основания 𝑑σ и толщиной 𝑑𝑟. Допустим, что на объём падает излучение со всех сторон, и найдём силу светового давления, действующую на объём в направлении нормали к основанию. Рассмотрим сперва излучение, падающее на объём под углом θ к нормали внутри телесного угла 𝑑ω в интервале частот от ν до ν+𝑑ν в течение промежутка времени 𝑑𝑡. Если интенсивность излучения есть 𝐼ν, то количество энергии, падающее на объём, будет равно 𝐼ν 𝑑σ cosθ 𝑑ω 𝑑ν 𝑑𝑡. Однако не вся эта энергия производит давление на объём, а только часть её, поглощаемая объёмом. Так как путь фотонов в объёме равен 𝑑𝑟 secθ, то количество поглощаемой объёмом энергии равно αν 𝐼ν 𝑑σ 𝑑𝑟 𝑑ω 𝑑ν 𝑑𝑡. Чтобы найти количество движения, получаемое объёмом в направлении нормали к основанию, надо эту энергию умножить на cosθ/𝑐. Следовательно, указанное количество движения будет равно

cosθ

𝑐

α

ν

𝐼

ν

𝑑σ

𝑑𝑟

𝑑ω

𝑑ν

𝑑𝑡

.

Интегрируя это выражение по всем частотам и по всем направлениям, получаем полное количество движения, приобретаемое объёмом за время 𝑑𝑡. Оно равно

1

𝑐

𝑑σ

𝑑𝑟

𝑑𝑡

α

ν

𝑑ν

𝐼

ν

cosθ

𝑑ω

,

или

1

𝑐

𝑑σ

𝑑𝑟

𝑑𝑡

α

ν

𝐻

ν

𝑑ν

.

(4.54)

Обозначим через

𝑓

𝑟

𝑑σ

𝑑𝑟

𝑑𝑡

(4.55)

импульс силы светового давления, действующей на объём 𝑑σ𝑑𝑟 за время 𝑑𝑡. Из основного закона механики следует, что два последние выражения должны быть равны друг другу. Поэтому получаем

𝑓

𝑟

=

1

𝑐

α

ν

𝐻

ν

𝑑ν

.

(4.56)

Этой формулой даётся сила светового давления, действующая на единицу объёма.

Силу, действующую на элементарный объём, можно также представить как разность давлений на основания объёма. Обозначая через 𝑝𝑟 световое давление, мы можем записать эту силу в виде

-

𝑑𝑝

𝑟

𝑑σ

𝑑𝑡

.

(4.57)

Приравнивая друг другу выражения (4.54) и (4.57), находим

𝑑𝑝𝑟

𝑑𝑟

=-

1

𝑐

α

ν

𝐻

ν

𝑑ν

.

(4.58)

Применим последнюю формулу к звёздной фотосфере. Считая, как и раньше, что коэффициент поглощения не зависит от частоты, вместо (4.58) получаем

𝑑𝑝

𝑟

=-

1

𝑐

𝐻α

𝑑𝑟

,

(4.59)

или, пользуясь (4.18),

𝑑𝑝

𝑟

=-

𝑎

4

𝑇

4

𝑒

α

𝑑𝑟

.

(4.60)

Сравнение (4.60) с (4.45) даёт

𝑝

𝑟

=

1

3

𝑎

𝑇⁴

.

(4.61)

Итак, в рассматриваемом случае для светового давления получается такое же выражение, как и при термодинамическом равновесии.

Выше мы считали, что фотосфера находится в равновесии под действием тяготения и газового давления, и поэтому в уравнении (4.42) под 𝑝 понималось только газовое давление. Будем теперь понимать под 𝑝 сумму газового давления 𝑝𝑔 и светового давления 𝑝𝑟. Тогда уравнение (4.42) запишется в виде

𝑑(𝑝

𝑔

+𝑝

𝑟

)

=-

𝑔ρ

𝑑𝑟

.

(4.62)

Пользуясь уравнениями (4.62) и (4.45), а также выражением (4.43) для газового давления и выражением (4.61) для светового давления, можно получить, как и выше, распределение температуры и плотности в фотосфере. Однако мы не будем делать этого, а найдём лишь отношение светового давления 𝑝𝑟 к полному давлению 𝑝=(𝑝𝑔+𝑝𝑟) Разделив (4.59) на (4.42) и положив α=ϰρ, получаем

𝑑𝑝𝑟

𝑑(𝑝𝑔+𝑝𝑟)

=

ϰ𝐻

𝑔𝑐

.

(4.63)

Полный поток излучения 𝐻 постоянен в фотосфере. Мы примем, что и ϰ=const. В этом случае интегрирование даёт

𝑝

𝑟

-

𝑝

0

𝑟

=

ϰ𝐻

𝑔𝑐

(

𝑝

𝑔

+

𝑝

𝑟

-

𝑝

0

𝑟

),

(4.64)

где

𝑝

0

𝑟

— световое давление на поверхности звезды. Отсюда для глубоких слоёв фотосферы следует

𝑝𝑟

𝑝

=

ϰ𝐻

𝑔𝑐

.

(4.65)

Для вычислений по формуле (4.65) надо знать величину ϰ (т.е. средний коэффициент поглощения, рассчитанный на единицу массы). Для этого могут быть использованы формулы, приведённые в следующем параграфе. Вычисления показывают, что для звёзд типа Солнца величина 𝑝𝑟/𝑝 — порядка нескольких тысячных, а для звёзд более поздних спектральных классов главной последовательности она ещё меньше. Следовательно, для этих звёзд световым давлением можно пренебречь по сравнению с газовым. Однако роль светового давления растёт с увеличением эффективной температуры звезды, и для горячих сверхгигантов отношение светового давления к газовому — порядка единицы.

§ 5. Зависимость коэффициента поглощения от частоты

1. Излучение и поглощение в непрерывном спектре.

До сих пор мы не касались вопроса о том, с какими физическими процессами связано излучение и поглощение энергии в непрерывном спектре. Переходя теперь к рассмотрению этого вопроса, обратимся к схеме энергетических уровней атома (рис. 4).

Рис. 4

Как известно, каждый атом может находиться в некоторых устойчивых состояниях с определёнными дискретными значениями энергии: 𝐸₁, 𝐸₂, …, 𝐸𝑖, …. Эти значения энергии отрицательны 𝐸𝑖<0. В соответствующих им состояниях внешний электрон связан с атомом, или, как иногда говорят, находится на эллиптической орбите. При переходах атома между такими состояниями происходит излучение и поглощение квантов в спектральных линиях.

Вместе с тем атом может находиться и в состояниях с положительной энергией 𝐸>0. В таких состояниях электрон не связан с атомом, т.е. находится на гиперболической орбите. Положительные энергетические уровни атома расположены непрерывно.

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука
Мир в ореховой скорлупке
Мир в ореховой скорлупке

Один из самых блестящих ученых нашего времени, известный не только смелостью идей, но также ясностью и остроумием их выражения, Хокинг увлекает нас к переднему краю исследований, где правда кажется причудливее вымысла, чтобы объяснить простыми словами принципы, которые управляют Вселенной.Великолепные цветные иллюстрации служат нам вехами в этом странствии по Стране чудес, где частицы, мембраны и струны движутся в одиннадцати измерениях, где черные дыры испаряются, и где космическое семя, из которого выросла наша Вселенная, было крохотным орешком.Книга-журнал состоит из иллюстраций (215), со вставками текста. Поэтому размер ее больше стандартной fb2 книги. Иллюстрации вычищены и подготовлены для устройств с экранами от 6" (800x600) и более, для чтения рекомендуется CoolReader.Просьба НЕ пересжимать иллюстрации, т. к. они уже сжаты по максимуму (где-то Png с 15 цветами и более, где то jpg с прогрессивной палитрой с q. от 50–90). Делать размер иллюстраций меньше не имеет смысла — текст на илл. будет не читаемый, во вторых — именно по этой причине книга переделана с нуля, — в библиотеке была только версия с мелкими илл. плохого качества. Макс. размер картинок: 760(высота) x 570(ширина). Книга распознавалась с ~300mb pdf, часть картинок были заменены на идент. с сети (качество лучше), часть объединены т. к. иногда одна илл. — на двух страницах бум. книги. Также исправлена последовательность илл. в тексте — в рус. оригинале они шли на 2 стр. раньше, здесь илл. идет сразу после ссылки в тексте. Psychedelic

Стивен Уильям Хокинг

Астрономия и Космос