Читаем Квантовая механика и интегралы по траекториям полностью

Нормировка на конечный объём. Многие физики предпочитают другой, менее строгий подход. То, что они делают, заключается в некоторой модификации исходной задачи, причём результаты (в их физическом смысле) изменятся несущественно, однако все состояния оказываются дискретными по энергии и поэтому все разложения принимают вид простых сумм. В нашем примере этого можно достичь следующим образом. Мы рассматриваем амплитуду вероятности перехода из точки (x1,t1) в точку (x2,t2) за конечное время. Если эти две точки находятся на некотором конечном расстоянии друг от друга и разделяющий их промежуток времени не слишком велик, то в амплитуде заведомо не будет сколько-нибудь заметных различий от того, является ли электрон действительно свободным или предполагается помещённым в какой-то очень большой ящик объёмом V со стенками, расположенными очень далеко от точек x1 и x2. Если бы частица могла достичь стенок и вернуться назад за время t2-t1, это могло бы сказаться на амплитуде; но если стенки достаточно удалены, то они никак не повлияют на амплитуду.

Конечно, это предположение может стать неверным при некотором специальном выборе стенок; например, если точка x2 будет находиться в фокусе волн, вышедших из точки x1 и отражённых от стенок. Иногда по инерции допускают ошибку, заменяя систему, находящуюся в свободном пространстве, системой, расположенной в центре большой сферы. Тот факт, что система остаётся точно в центре идеальной сферы, может давать некий эффект (подобно появлению светлого пятна в центре тени от совершенно круглого предмета), который не исчезает, даже если радиус сферы стремится к бесконечности. Влияние поверхности было бы пренебрежимо малым в случае стенок другой формы или для системы, смещённой относительно центра этой сферы.

Рассмотрим сначала одномерный случай. Волновые функции, зависящие от координаты, имеют вид eipx, где x принимает оба знака. Какой вид будут иметь функции , если область изменения x ограничить произвольным интервалом от -L/2 до L/2? Ответ зависит от граничных условий, определяющих значения в точках x=-L/2 и x=L/2. Простейшими с физической точки зрения являются граничные условия в случае стенок, создающих для частицы сильный отталкивающий потенциал, ограничивая тем самым область её движения (т.е. при идеальном отражении). В этом случае в точках x=-L/2 и x=L/2 (x)=0. Решениями волнового уравнения

-

h^2

2m

^2

x^2

=

E,

(4.66)

соответствующими энергии E=p^2/2m=h^2k^2/2m в области |x|L/2, будут экспоненты eikx и e-ikx или любая их линейная комбинация. Как eikx, так и e-ikx не удовлетворяют выбранным граничным условиям, однако при k=nL (где n — целое число) требуемыми свойствами обладает в случае нечётного n их полусумма (т.е. cos kx), а в случае чётного n — делённая на i их полуразность (т.е. sin kx), как это схематически изображено на фиг. 4.1. Таким образом, волновые функции состояний имеют вид синусов и косинусов, а соответствующие им энергетические уровни дискретны и не составляют континуума.

Фиг. 4.1. Вид одномерных волновых функций, нормированных в ящике.

Показаны первые четыре из них. Энергии соответствующих уровней равны E1=h^2^2/2mL^2, E2=4E1, E3=9E1 и E4=16E1. Абсолютное значение энергии, которое зависит от размеров нашего фиктивного ящика, несущественно для большинства реальных задач. То, что действительно имеет значение, — это соотношение между энергиями различных состояний.

Если решения записать в виде 2/L cos kx и 2/L sin kx, то они будут нормированы, поскольку

L/2

L/2

(2/L)

1/2

cos kx

^2

dx

=1.

(4,67)

Сумма по всем состояниям является суммой по n. Если мы рассмотрим, например, синусоидальные волновые функции (т.е. чётные значения n), то при небольших значениях x и очень большой величине L (стенки далеки от интересующей нас точки) соседние по номерам n функции различаются весьма незначительно. Их разность

2/L

sin 2(n+1)

x

L

-sin 2n

x

L

=

=2

2/L

cos 2

2n+1

2

x

L

sin 2

x

2L

2/L

2x

L

cos 2

n+

1

2

x

L

(4.68)

приблизительно пропорциональна малой величине x/L. Поэтому сумму по n можно заменить интегралом по k=2n/L. Так как допустимые значения n расположены последовательно с интервалом 2/L, в промежутке n расположено L/2n состояний. Все это применимо также и к состояниям с косинусоидальной волновой функцией, поэтому во всех наших формулах мы можем заменить суммы интегралами

n=0

->

0

dn

2

L,

(4.69)

не забывая, что в конце нужно сложить результаты для обоих типов волновых функций, а именно 2/L cos kx и 2/L sin kx.

Часто бывает неудобным использовать в качестве волновых функций sin kx и cos kx, и более предпочтительными являются их линейные комбинации

e

ikx

=

cos kx

+i

sin kx

 и

e

-ikx

=

cos kx

-i

sin kx

.

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное