Читаем Квантовая механика и интегралы по траекториям полностью

Если, с другой стороны, предположить, что длины волн различаются на некоторую новую функцию 𝑓'(𝑦) как показано на фиг. б, то после перемножения вклады в интеграл от различных значений 𝑦 будут взаимно уничтожаться. Вероятность того, что импульс равен 𝑚𝑥/𝑇, в этом случае мала.

Если выбрать, как это показано на фиг. в, другое конечное положение 𝑥' то в область (-𝑏,𝑏) попадёт совсем другая часть кривой 𝐾. При подходящем выборе 𝑥' длина волны, соответствующая этой части кривой 𝐾 совпадает с длиной волны для функции 𝑓'(𝑦) и величина вероятности в этом случае снова возрастает. Другими словами, частицы с большой вероятностью будут иметь новое значение импульса 𝑝=𝑚𝑥'/𝑇.

Выражение для амплитуды в импульсном пространстве (5.5) относится к одномерному случаю. Его легко обобщить на трёхмерный случай, когда амплитуда вероятности записывается в виде

φ(𝐩)

=

𝐫

 

exp

-

𝑖

(𝐩⋅𝐫)

𝑓(𝐫)𝑑³𝐫

.

(5.6)

Здесь уже предполагается, что волновая функция 𝑓(𝐫) определена во всех точках трёхмерного координатного пространства. Амплитуда φ(𝐩) представляет собой амплитуду вероятности того, что частица имеет импульс 𝐩 в момент времени 𝑡=0. (Заметим, что эта амплитуда не определена для момента времени 𝑡=𝑇.) Временной интервал 𝑇 обусловливается самим измерительным прибором, и его можно варьировать, не изменяя при этом величины амплитуды в импульсном пространстве. Квадрат модуля этой амплитуды, умноженный на элемент объёма пространства импульсов, даёт вероятность нахождения импульса в трёхмерном интервале импульсного пространства 𝑑³𝐩/(2πℏ)³.

Мы проанализировали возможность измерения импульса на основе измерения времени пролёта. Такой же анализ можно было бы провести и для других методов. Рассмотрение любого метода измерения импульса должно привести нас к одному и тому же результату для амплитуды вероятности в пространстве импульсов. Предположим, что у нас есть два прибора, предназначенные для измерения одной и той же величины — импульса. Если они дают разные результаты, то мы должны объяснить это неисправностью одного из приборов. Таким образом, если согласиться, что измерение времени пролёта является приемлемым методом определения импульса, то любой прибор, измеряющий импульс, должен давать для распределения импульса 𝑃(𝑝)𝑑𝑝 тот же самый результат при условии, что система находится в одном и том же состоянии 𝑓(𝑦). Анализ любого приспособления, измеряющего импульс, должен давать для амплитуды вероятности, определяющей импульс 𝑝, одно и то же выражение φ(𝑝) с точностью до несущественной фазовой постоянной (т.е. с точностью до множителя 𝑒𝑖δ, где δ = const). Возьмём, например, следующую задачу.

Задача 5.1. Рассмотрите какой-нибудь прибор, предназначенный для измерения импульса в классическом приближении, такой, например, как масс-спектрограф. Проанализируйте этот прибор, пользуясь методом, которому мы следовали в гл. 4. Покажите, что для амплитуды в пространстве импульсов получается тот же результат.

Переход к импульсному представлению. Мы называли ψ(𝐑,𝑡) амплитудой вероятности того, что частица находится в точке 𝐑 в момент времени 𝑡. Выше показано, что соответствующая амплитуда в пространстве импульсов имеет вид

φ(𝐩,𝑡)

=

𝐑

 

exp

-

𝑖

(𝐩⋅𝐑)

ψ(𝐑,𝑡)

𝑑³𝐑

.

(5.7)

Будем называть её амплитудой вероятности того, что частица имеет импульс 𝐩 в момент времени 𝑡. Часто оказывается более удобным рассматривать задачи не в координатном представлении, а в импульсном, или, как говорят, в пространстве импульсов, а не координат. Фактически переход от одного представления к другому есть не что иное, как преобразование Фурье. Таким образом, если мы имеем импульсное представление и хотим перейти снова к координатному, то пользуемся обратным преобразованием

ψ(𝐑,𝑡)

=

𝐩

 

exp

𝑖

(𝐩⋅𝐑)

φ(𝐩,𝑡)

𝑑³𝐩

(2πℏ)³

.

(5.8)

Эту формулу можно истолковать на языке тех же физических понятий, которые мы уже использовали для описания структуры других амплитуд. Амплитуда вероятности того, что частица находится в точке 𝐑, представляется в виде суммы по всем возможным альтернативам. В данном случае эти альтернативы соответствуют произведению двух членов. Один из них — амплитуда вероятности того, что импульс частицы равен 𝐩, т.е. амплитуда ψ(𝐩). Другой — экспонента exp(𝑖𝐩⋅𝐑/ℏ) представляет собой амплитуду вероятности того, что если импульс равен 𝐩, то частица находится в точке 𝐑. Этот второй множитель не является для нас новым, так как мы уже обсуждали подобное выражение в задаче 4 гл. 3.

Заметим, что в преобразовании (5.7) показатель у экспоненты отрицательный. Это обстоятельство можно истолковать таким же образом, как это делалось в § 3 гл. 4.

Следовательно, exp(-𝑖𝐩⋅𝐑/ℏ) представляет собой амплитуду вероятности того, что если частица находится в точке 𝐑, то её импульс равен 𝐩.

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука