Читаем Квантовая механика и интегралы по траекториям полностью

Было бы неправильным брать в этом случае просто главную часть интеграла в точке такого полюса. Это дало бы нам неверный результат. В частности, обратное преобразование полученного ядра не привело бы снова к тому первоначальному координатному представлению ядра, из которого мы исходили. Результат преобразования отличался бы от исходного выражения тем, что не обращался бы в нуль при отрицательных значениях времени. Правильный результат для таких интегралов можно получить, если сдвинуть полюс на бесконечно малое расстояние выше действительной оси. Это и достигается введением в наше выражение величины ε.

Преобразовав выражение 𝑖/(ω+𝑖ε) к виду


𝑖(ω-𝑖ε)

ω²+ε²

=

𝑖ω

ω²+ε²

+

ε

ω²+ε²

,


(5.16)


можно первый член в правой части представить как 𝑖/ω и в дальнейшем интеграл от него вычислять в смысле главного значения. Второй член при ε, стремящемся к нулю, становится равным πδ(ω), так что в дальнейшем при интегрировании его следует учитывать именно в таком виде. Это означает, что если мы хотим более точно математически определить значение указанного интеграла, то выражение 𝑖/(ω+𝑖ε) должно быть заменено на 𝙿𝙿[(𝑖/ω)+πδ(ω)]. Другими словами,


0

𝑒

𝑖ωτ

𝑑𝑡

=

 

lim

ε→0


𝑖

ω+𝑖ε

=

𝙿𝙿



𝑖

ω


+πδ(ω)

.


(5.17)


В последующем во всех выражениях, содержащих ε, будет подразумеваться предельный переход при ε→0.

Возвращаясь к вычислению ядра, заменим ω на 𝐸2-(𝑝²/2𝑚), после чего получим


𝐸

0

(𝐩

2

,𝐸

2

;𝐩

1

,𝐸

1

)

=

(2πℏ)

4

δ³

(𝐩

2

-𝐩

1

)

δ(𝐸

2

-𝐸

1

)

×


×

𝐸

1

-

𝑝²1

2𝑚

+𝑖ε

⎫-1

.


(5.18)


Наличие δ-функций в этом выражении означает, что ни энергия, ни импульс 𝑝 не изменяются во время движения свободной частицы. Эти две величины, как это видно из последнего множителя, и определяют движение частицы.

Таким образом, амплитуда движения свободной частицы с энергией 𝐸 и импульсом 𝑝 из одной точки в другую пропорциональна 𝑖[𝐸-(𝑝²/2𝑚)+𝑖ε]-1.

В этой главе мы уже отмечали, что энергия 𝐸 здесь, вообще говоря, не равна 𝑝²/2𝑚, а является независимой переменной.

Чтобы понять, чем это обусловлено, рассмотрим ядро для свободной частицы, которое можно представить некоторой осциллирующей функцией в пространстве и времени, где величина 𝐸 является коэффициентом при переменной времени и, следовательно, обладает свойствами частоты. Ядро, заданное равенством (5.12), представлено на фиг. 5.4 как функция разности времён 𝑇=𝑡2-𝑡1. Оно обращается в нуль при отрицательном 𝑇 и начинает осциллировать при значении 𝑇=0. Преобразование от временного к энергетическому представлению эквивалентно преобразованию Фурье. Так как волна образуется сразу при 𝑇=0, то фурье-компонента определена при всех значениях частот и, следовательно, для всех энергий. Однако если функция рассматривается на большом временном интервале (много периодов), то в фурье-компоненте начинает преобладать лишь одна из частот. Для свободной частицы такая доминирующая частота соответствует энергии 𝐸0=𝑝²/2𝑚.

Фиг. 5.4. Действительная часть ядра 𝐾0 (описывающего движение свободной частицы) как функция времени.

Для отрицательных моментов времени эта функция обращается в нуль, в точке 𝑡=0 она скачкообразно возрастает, а далее имеет вид косинусоидальной волны с постоянной амплитудой и частотой.

Именно поэтому ядро в случае свободной частицы содержит множитель


𝑖

=𝙿𝙿

𝑖

+πδ

𝐸

2

1

-

𝑝²

2𝑚


.


𝐸

0

-𝑝

2

2𝑚+𝑖ε

𝐸

2

-𝑝²/2𝑚


1


1


(5.19)


Здесь первый член справа учитывает переходные процессы, обусловленные мгновенным возникновением колебаний при 𝑡=0. Второй член описывает стационарное поведение и показывает, что по прошествии достаточного времени мы обнаружим, как обычно, значение энергии, равное 𝑝²/2𝑚 однако вблизи точки 𝑡=0 энергия не определяется этой классической формулой.

Задача 5.2. Пусть мы проделаем преобразование Фурье только для времени и не затронем пространственных переменных. В этом случае


𝑘(𝑥

2

,𝐸

2

;𝑥

1

,𝐸

1

)

=

∫∫

𝑒

(𝑖ℏ)𝐸2𝑡2

𝐾(𝑥

2

,𝑡

2

;𝑥

1

,𝑡

1

)

𝑒

-(𝑖/ℏ)𝐸1𝑡1

𝑑𝑡

2

𝑑𝑡

1

.


(5.20)


Покажите, что для системы с не зависящим от времени гамильтонианом 𝐻


𝑘(𝑥

2

,𝐸

2

;𝑥

1

,𝐸

1

)

=

2πℏ𝑖δ

(𝐸

2

-𝐸

1

)

 

𝑚


φ𝑚(𝑥2*𝑚(𝑥1)

𝐸1-𝐸𝑚+𝑖ε

,


(5.21)


где φ𝑚 — собственные функции, а 𝐸𝑚 — собственные значения оператора 𝐻.

§ 2. Измерение квантовомеханических величин

Характеристическая функция. В предыдущем параграфе мы показали, каким образом эксперимент, предназначенный для измерения импульса, приводит к определению распределения вероятности импульсов. По результатам правильно поставленного эксперимента можно ответить на вопрос: какова вероятность того, что импульс частицы равен 𝐩. Используя тот факт, что существует распределение вероятности различных значений импульса, мы нашли, каким образом волновая функция (или амплитуда вероятности) выражается в зависимости от импульсных переменных. Мы установили, что действительно можем и полностью описать систему и рассматривать задачи в импульсно-энергетическом представлении так же хорошо, как и в пространственно-временном представлении, которым до сих пор пользовались.

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука