Символы
Кубиты помогают понять критически важное свойство волновых функций: каждая из них подобна гипотенузе прямоугольного треугольника, а катеты этого треугольника соответствуют амплитудам каждого возможного результата измерения. Иными словами, волновая функция похожа на
Вектор, о котором мы говорим, не указывает направление в реальном физическом пространстве, например «вверх» или «на север». Нет, скорее он направлен в пространстве всех возможных результатов измерений. Если речь идет о кубите одного спина, то это будет верхний или нижний спин (если мы выберем какую-либо ось, вдоль которой будем его измерять). Когда мы говорим, что «кубит находится в суперпозиции верхнего и нижнего спинов», мы фактически имеем в виду: «вектор, представляющий квантовое состояние, имеет одну компоненту, описывающую верхний спин, и другую компоненту, описывающую нижний спин».
Естественно полагать, что верхний и нижний спины указывают на противоположные направления: просто посмотрите на стрелки. Однако как квантовые состояния они перпендикулярны друг другу: кубит, полностью соответствующий верхнему спину, не имеет компоненты, которая соответствовала бы нижнему спину, и наоборот. Даже волновая функция для координаты частицы является вектором, хотя обычно мы представляем ее как гладкую функцию, распределенную в пространстве. Фокус в том, чтобы считать каждую точку пространства определяющей отдельную компоненту, а волновую функцию – суперпозицией всех этих компонент. Существует бесконечное количество таких векторов, поэтому пространство всех возможных квантовых состояний, именуемое
Когда в нашем квантовом состоянии всего две компоненты, а не бесконечное множество, непросто представить состояние как «волновую функцию». Она не слишком волнистая и не похожа на гладкую функцию в пространстве. Но на самом деле думать об этом нужно совершенно иначе. Квантовое состояние – это не функция в обычном пространстве, а функция в абстрактном «пространстве результатов измерений», которое в случае кубита предусматривает всего две возможности. Если наблюдаемый нами феномен – это координата отдельной частицы, то квантовое состояние присваивает амплитуду каждой возможной координате, и это напоминает волну в обычном пространстве. Однако это необычный случай; по своей природе волновая функция более абстрактна, и, когда в ней участвует более одной частицы, ее становится трудно визуализировать. И тогда терминология «волновой функции» нам уже мешает. Кубиты – отличная вещь хотя бы потому, что у такой волновой функции всего две компоненты.
Может показаться, что данное математическое отступление было излишним, но есть непосредственная польза в том, что мы стали мыслить о волновых функциях как о векторах. Во-первых, становится понятно правило Борна, согласно которому вероятность получить любой конкретный результат измерения равна квадрату его амплитуды. Подробнее мы обсудим этот момент позже, однако легко увидеть, какой смысл заключен в этой идее. Если волновая функция – это вектор, то у нее есть длина. Логично предположить, что со временем длина этого вектора может уменьшаться или увеличиваться, но это не так; согласно уравнению Шрёдингера, меняется лишь «направление» волновой функции, а длина ее остается постоянной. Длину волновой функции можно вычислить по теореме Пифагора, для этого достаточно знать геометрию на уровне старших классов.
Числовое значение длины вектора несущественно, мы просто можем выбрать удобное число, зная, что оно останется постоянным. Пусть это будет единица, то есть будем считать, что любая волновая функция это вектор, длина которого равна единице. Сам этот вектор подобен гипотенузе прямоугольного треугольника, а его компоненты – катетам. Тогда теорема Пифагора подсказывает нам простое отношение: сумма квадратов амплитуд дает единицу, |