Рассмотрим эксперимент, в котором мы стреляем друг в друга двумя электронами, движущимися с одинаковой скоростью в противоположных направлениях. Поскольку заряд у обоих электронов отрицательный, они оттолкнутся друг от друга. В классической физике, зная исходные координаты и скорости электронов, мы могли бы в точности вычислить те направления, в которых они отскочат друг от друга. Но в квантовомеханическом контексте все, что мы можем – это рассчитать вероятность, с которой они могут наблюдаться на тех или иных траекториях после взаимодействия друг с другом. Волновая функция каждой частицы распределяется, условно говоря, сферическим образом, пока мы наконец не пронаблюдаем частицу и не зафиксируем конкретное направление, в котором она движется.
Если действительно провести этот эксперимент и посмотреть, в каких направлениях будут разлетаться электроны, то мы заметим кое-что важное. Поскольку изначально у электронов были равные скорости и противоположные направления движения, их суммарный импульс был нулевым. А поскольку импульс сохраняется, то и после взаимодействия их суммарный импульс должен быть равен нулю. Таким образом, хотя нам и может казаться, что каждый из электронов может двигаться в любом направлении, на самом деле, в каком бы направлении ни двигался один из них – другой будет двигаться в строго противоположном.
Если призадуматься, то это довольно забавно. Для первого электрона существует вероятность отскочить под разными углами, и для второго тоже. И если бы у каждого из них была отдельная волновая функция, то эти возможности были бы совершенно не связаны друг с другом. Можно было бы представить, что мы наблюдаем всего один из электронов и измеряем, в каком направлении он движется. Второй электрон остается нетронут. Откуда ему «знать», что он должен двигаться в направлении, противоположном первому, когда мы начнем его измерять?
На этот вопрос мы уже ответили. Дело в том, что электроны не имеют двух отдельных волновых функций: их поведение описывается единой волновой функцией Вселенной. В данном случае мы игнорируем всю остальную Вселенную, сосредоточившись только на этих двух электронах. Но мы не можем игнорировать один электрон, сосредоточившись лишь на другом: прогнозы, которые мы делаем для наблюдения за любым из двух электронов, могут кардинально меняться в зависимости от исхода наблюдения за вторым. Электроны находятся в состоянии запутанности друг с другом.
Волновая функция – это присваивание комплексного числа, амплитуды, любому возможному исходу наблюдения, и квадрат этой амплитуды равен вероятности того, что мы будем наблюдать данный результат, если сделаем такое измерение. Если речь идет о более чем одной частице, это означает, что мы присваиваем амплитуду каждому возможному результату наблюдения всех частиц одновременно. Например, если бы мы наблюдали их координаты, то волновую функцию Вселенной можно рассматривать как присвоение амплитуды каждой возможной комбинации координат всех частиц во Вселенной.
Напрашивается вопрос – а возможно ли визуализировать нечто подобное? Можно визуализировать простой случай, когда одиночная воображаемая частица перемещается всего в одном измерении. Допустим, это электрон, заключенный в тонком медном проводе: рисуем линию, которая соответствует возможным координатам этой частицы, и чертим график функции, представляющей амплитуду в каждой точке этой линии. (На самом деле мы жульничаем даже в этом простом примере, так как откладываем на графике вещественные числа, а не комплексные, но пусть будет так.) Для двух частиц, ограниченных таким же одномерным движением, можно начертить двумерную плоскость, в которой будут представлены координаты каждой из двух частиц, а затем сделать трехмерный контурный график для волновой функции. Обратите внимание: речь идет не о единственной частице в двумерном пространстве, а о двух частицах, каждая из которых находится в одномерном пространстве, так что волновая функция, определенная на двумерной плоскости, описывает координаты обеих частиц.
Поскольку скорость света конечна, а с момента Большого взрыва прошло конечное количество времени, мы можем видеть лишь ограниченную область космоса, которую называем «наблюдаемая Вселенная». В наблюдаемой Вселенной примерно 1088 частиц, в основном это фотоны и нейтрино. Это число гораздо больше двух. Причем каждая частица расположена в трехмерном пространстве, а не на одномерной линии. Как в таком мире предполагается визуализировать волновую функцию, присваивающую амплитуду каждой из возможных конфигураций 1088 частиц, распределенных в трехмерном пространстве?