Читаем Квантовые миры и возникновение пространства-времени полностью

Рассмотрим эксперимент, в котором мы стреляем друг в друга двумя электронами, движущимися с одинаковой скоростью в противоположных направлениях. Поскольку заряд у обоих электронов отрицательный, они оттолкнутся друг от друга. В классической физике, зная исходные координаты и скорости электронов, мы могли бы в точности вычислить те направления, в которых они отскочат друг от друга. Но в квантовомеханическом контексте все, что мы можем – это рассчитать вероятность, с которой они могут наблюдаться на тех или иных траекториях после взаимодействия друг с другом. Волновая функция каждой частицы распределяется, условно говоря, сферическим образом, пока мы наконец не пронаблюдаем частицу и не зафиксируем конкретное направление, в котором она движется.

Если действительно провести этот эксперимент и посмотреть, в каких направлениях будут разлетаться электроны, то мы заметим кое-что важное. Поскольку изначально у электронов были равные скорости и противоположные направления движения, их суммарный импульс был нулевым. А поскольку импульс сохраняется, то и после взаимодействия их суммарный импульс должен быть равен нулю. Таким образом, хотя нам и может казаться, что каждый из электронов может двигаться в любом направлении, на самом деле, в каком бы направлении ни двигался один из них – другой будет двигаться в строго противоположном.

Если призадуматься, то это довольно забавно. Для первого электрона существует вероятность отскочить под разными углами, и для второго тоже. И если бы у каждого из них была отдельная волновая функция, то эти возможности были бы совершенно не связаны друг с другом. Можно было бы представить, что мы наблюдаем всего один из электронов и измеряем, в каком направлении он движется. Второй электрон остается нетронут. Откуда ему «знать», что он должен двигаться в направлении, противоположном первому, когда мы начнем его измерять?

На этот вопрос мы уже ответили. Дело в том, что электроны не имеют двух отдельных волновых функций: их поведение описывается единой волновой функцией Вселенной. В данном случае мы игнорируем всю остальную Вселенную, сосредоточившись только на этих двух электронах. Но мы не можем игнорировать один электрон, сосредоточившись лишь на другом: прогнозы, которые мы делаем для наблюдения за любым из двух электронов, могут кардинально меняться в зависимости от исхода наблюдения за вторым. Электроны находятся в состоянии запутанности друг с другом.

Волновая функция – это присваивание комплексного числа, амплитуды, любому возможному исходу наблюдения, и квадрат этой амплитуды равен вероятности того, что мы будем наблюдать данный результат, если сделаем такое измерение. Если речь идет о более чем одной частице, это означает, что мы присваиваем амплитуду каждому возможному результату наблюдения всех частиц одновременно. Например, если бы мы наблюдали их координаты, то волновую функцию Вселенной можно рассматривать как присвоение амплитуды каждой возможной комбинации координат всех частиц во Вселенной.

Напрашивается вопрос – а возможно ли визуализировать нечто подобное? Можно визуализировать простой случай, когда одиночная воображаемая частица перемещается всего в одном измерении. Допустим, это электрон, заключенный в тонком медном проводе: рисуем линию, которая соответствует возможным координатам этой частицы, и чертим график функции, представляющей амплитуду в каждой точке этой линии. (На самом деле мы жульничаем даже в этом простом примере, так как откладываем на графике вещественные числа, а не комплексные, но пусть будет так.) Для двух частиц, ограниченных таким же одномерным движением, можно начертить двумерную плоскость, в которой будут представлены координаты каждой из двух частиц, а затем сделать трехмерный контурный график для волновой функции. Обратите внимание: речь идет не о единственной частице в двумерном пространстве, а о двух частицах, каждая из которых находится в одномерном пространстве, так что волновая функция, определенная на двумерной плоскости, описывает координаты обеих частиц.

Поскольку скорость света конечна, а с момента Большого взрыва прошло конечное количество времени, мы можем видеть лишь ограниченную область космоса, которую называем «наблюдаемая Вселенная». В наблюдаемой Вселенной примерно 1088 частиц, в основном это фотоны и нейтрино. Это число гораздо больше двух. Причем каждая частица расположена в трехмерном пространстве, а не на одномерной линии. Как в таком мире предполагается визуализировать волновую функцию, присваивающую амплитуду каждой из возможных конфигураций 1088 частиц, распределенных в трехмерном пространстве?

Перейти на страницу:

Все книги серии New Science

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Биоцентризм. Как жизнь создает Вселенную
Биоцентризм. Как жизнь создает Вселенную

Время от времени какая-нибудь простая, но радикальная идея сотрясает основы научного знания. Ошеломляющее открытие того, что мир, оказывается, не плоский, поставило под вопрос, а затем совершенно изменило мироощущение и самоощущение человека. В настоящее время все западное естествознание вновь переживает очередное кардинальное изменение, сталкиваясь с новыми экспериментальными находками квантовой теории. Книга «Биоцентризм. Как жизнь создает Вселенную» довершает эту смену парадигмы, вновь переворачивая мир с ног на голову. Авторы берутся утверждать, что это жизнь создает Вселенную, а не наоборот.Согласно этой теории жизнь – не просто побочный продукт, появившийся в сложном взаимодействии физических законов. Авторы приглашают читателя в, казалось бы, невероятное, но решительно необходимое путешествие через неизвестную Вселенную – нашу собственную. Рассматривая проблемы то с биологической, то с астрономической точки зрения, книга помогает нам выбраться из тех застенков, в которые западная наука совершенно ненамеренно сама себя заточила. «Биоцентризм. Как жизнь создает Вселенную» заставит читателя полностью пересмотреть свои самые важные взгляды о времени, пространстве и даже о смерти. В то же время книга освобождает нас от устаревшего представления, согласно которому жизнь – это всего лишь химические взаимодействия углерода и горстки других элементов. Прочитав эту книгу, вы уже никогда не будете воспринимать реальность как прежде.

Боб Берман , Роберт Ланца

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Прочая научная литература / Образование и наука

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное